Skip to main content
Log in

Wetting Transition in a Molten Metal and Solid Substrate System in High Magnetic Fields

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Wetting transitions between molten metals and different solid substrates were investigated using the sessile drop method to evaluate the possibilities of regulating wettability by high magnetic fields (HMFs) during wetting. For most wetting counterparts, the molten-metal droplet outline showed an apparent change because of the influence of HMFs. Contact angles that were measured with HMFs decreased compared with contact angles that were measured without HMFs. The temperature and magnetic-flux density had an evident but more complicated effect on the wetting transition. For reactive wetting systems, the effect of HMFs on changes of element distributions at the metal/substrate interface may lead to a variety of wetting transitions. For non-reactive wetting systems, solidified metal droplets can move from the solid substrates after wetting. No detailed and comprehensive explanations on HMF wetting-transition mechanisms exist, and further work is required. This study contributes to perfect wetting mechanisms and theories and provides a scientific approach to control wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Wat, J.I. Lee, C.W. Ryu, B. Gludovatz, J. Kim, A.P. Tomsia, T. Ishikawa, J. Schmitz, A. Meyer, M. Alfreider, D. Kiener, E.S. Park and R.O. Ritchie: Nat. Commun., 2019, vol. 10, 961.

    Google Scholar 

  2. J.R. Kang, X.G. Song, S.P. Hu, D. Liu, W.J. Guo, W. Fu, and J. Cao: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5870-5878.

    Google Scholar 

  3. K. Zeng and K.N. Tu: Mat. Sci. Eng. R, 2002, vol. 38, pp. 55-105..

    Google Scholar 

  4. J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y.F. Shi, P.M. Ajayan and N.A. Koratkar: Nat. Mater., 2012, vol. 11, pp. 217-222.

    CAS  Google Scholar 

  5. Q. Wang, B. Xu, Q. Hao, D. Wang, H. Liu and L. Jiang: Nat. Commun., 2019, vol. 10, 1212.

    Google Scholar 

  6. V. Bergeron, D. Bonn, J.Y. Martin and L. Vovelle: Nature, 2000, vol. 405, pp. 772-775.

    CAS  Google Scholar 

  7. N.S. Dhillon, J. Buongiorno and K.K. Varanasi: Nat. Commun., 2015, vol. 6, 8247.

    Google Scholar 

  8. A.J. Klinter, C.A. Leon-Patiño and R.A.L. Drew: Acta Mater., 2010, vol. 58, pp. 1350-1360.

    CAS  Google Scholar 

  9. G. Kumar and K.N. Prabhu: Adv. Colloid Interfac., 2007, vol. 133, pp. 61-89.

    CAS  Google Scholar 

  10. N. Ray, L. Froyen, K. Vanmeensel and J. Vleugels: Acta Mater., 2018, vol. 144, pp. 459-469.

    CAS  Google Scholar 

  11. N. Eustathopoulos: Acta Mater., 1998, vol. 46, pp. 2319-2327.

    CAS  Google Scholar 

  12. P. Nautiyal, A. Gupta, S. Seal, B. Boesl and A. Agarwal: Acta Mater., 2017, vol. 126, pp. 124-131.

    CAS  Google Scholar 

  13. F. Wang, A. Reiter, M. Kellner, J. Brillo, M. Selzer and B. Nestler: Acta Mater., 2018, vol. 146, pp. 106-118.

    CAS  Google Scholar 

  14. H. Fujii, S. Izutani, T. Matsumoto, S. Kiguchi and K. Nogi: Mat. Sci. Eng. A, 2006, vol. 417, pp. 99-103.

    Google Scholar 

  15. J.-G. Li and J. Gao: Mater. Lett., 2006, vol. 60, pp. 1323-1326.

    CAS  Google Scholar 

  16. C.H. Jang, S.I. Paik, Y.W. Kim and N.-E. Lee: Appl. Phys. Lett., 2007, vol. 90, 091915.

    Google Scholar 

  17. M. Lei, J.C. Feng, X.Y. Tian, J.M. Shi and L.X. Zhang: Vacuum, 2017, vol. 138, pp. 22-29.

    CAS  Google Scholar 

  18. Q. Wang, M. Dong, J. Sun, T. Liu and Y. Yuan: Acta Metall. Sin., 2018, vol. 54, pp. 742-756.

    CAS  Google Scholar 

  19. Y. Miyazawa, S. Morita and H. Sekiwa: J. Cryst. Growth, 1996, vol. 166, pp. 286-290.

    CAS  Google Scholar 

  20. T.P. Hou and K.M. Wu: Scripta Mater., 2012, vol. 67, pp. 609-612.

    CAS  Google Scholar 

  21. D. Du, Y. Fautrelle, Z. Ren, R. Moreau and X. Li: Acta Mater., 2016, vol. 121, pp. 240-256.

    CAS  Google Scholar 

  22. Q. Wang, D.-G. Li, K. Wang, Z.-Y. Wang and J.-C. He: Scripta Mater., 2007, vol. 56, pp. 485-488.

    CAS  Google Scholar 

  23. Y. Ikezoe, N. Hirota, J. Nakagawa and K. Kitazawa: Nature, 1998, vol. 393, pp. 749-750.

    CAS  Google Scholar 

  24. Y. Zhang, N. Gey, C. He, X. Zhao, L. Zuo and C. Esling: Acta Mater., 2004, vol. 52, pp. 3467-3474.

    CAS  Google Scholar 

  25. D. Vriami, E. Beaugnon, J.-P. Erauw, J. Vleugels and O. Van der Biest: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 3959-3967.

    CAS  Google Scholar 

  26. Y.-M. Liu, R.-Q. Chen, Z.-Q. Wu, J. Zhu, J.-Y. Shi, H.-M. Lu, P. Shang and D.-C. Yin: Rev. Sci. Instrum., 2016, vol. 87, 095107.

    Google Scholar 

  27. C. Li, Y. Cao, R. Guo, S. He, W. Xuan, X. Li, Y. Zhong and Z. Ren: Rev. Sci. Instrum., 2017, vol. 88, 115110.

    Google Scholar 

  28. Y. Xiao, T. Liu, Z. Lu, S. Yuan, G. Li, S. Dong and Q. Wang: Rev. Sci. Instrum., 2019, vol. 90, 063902.

    Google Scholar 

  29. G.E. Totten and D.S. MacKenzie: Handbook of Aluminum, Marcel Dekker, Inc., New York, 2003, pp. 47-49.

    Google Scholar 

  30. H.R. Leo and F.J. Simmons: J. Magn. Magn. Mater., 1988, vol. 74, pp. 87-90.

    CAS  Google Scholar 

  31. G.R. Prin, T. Baffie, M. Jeymond and N. Eustathopoulos: Mat. Sci. Eng. A, 2001, vol. 298, pp. 34-43.

    Google Scholar 

  32. H. Zhu, K. Dong, J. Huang, J. Li, G. Wang and Z. Xie: Mater. Chem. Phys., 2014, vol. 145, pp. 334-341.

    CAS  Google Scholar 

  33. G.W. Liu, M.L. Muolo, F. Valenza and A. Passerone: Ceram. Int., 2010, vol. 36, pp. 1177-1188.

    CAS  Google Scholar 

  34. Z. Weltsch, A. Lovas, J. Takács, Á. Cziráki, A. Toth and G. Kaptay: Appl. Surf. Sci., 2013, vol. 268, pp. 52-60.

    CAS  Google Scholar 

  35. M. Wu, L. Chang, L. Zhang, X. He and X. Qu: Surf. Coat. Tech., 2016, vol. 287, pp. 145-152.

    CAS  Google Scholar 

  36. X.B. Zhou and J.Th.M.De Hosson: Acta Mater., 1996, vol. 44, pp. 421-426.

    CAS  Google Scholar 

  37. H.-N. Ho and S.-T. Wu: Mat. Sci. Eng. A, 1998, vol. 248, pp. 120-124.

    Google Scholar 

  38. M. Kida, M. Bahraini, J.M. Molina, L. Weber and A. Mortensen: Mat. Sci. Eng. A, 2008, vol. 495, pp. 197-202.

    Google Scholar 

  39. S.A. Sánchez, J. Narciso, E. Louis, F. Rodríguez-Reinoso, E. Saiz and A. Tomsia: Mat. Sci. Eng. A, 2008, vol. 495, pp. 187-191.

    Google Scholar 

  40. N. Eustathopoulos, M.G. Nicholas and B. Drevet: Wettability at high temperatures, Elsevier Science Ltd., Oxford, 1999, pp. 283-291.

    Google Scholar 

  41. N. Eustathopoulos, D. Chatain and L. Coudurier: Mat. Sci. Eng. A, 1991, vol. 135, pp. 83-88.

    Google Scholar 

  42. C.W. Extrand: J. Colloid Interf. Sci., 1993, vol. 157, pp. 72-76.

    CAS  Google Scholar 

  43. Š. Šikalo, M. Marengo, C. Tropea and E.N. Ganić: Exp. Therm. Fluid Sci., 2002, vol. 25, pp. 503-510.

    Google Scholar 

  44. P. Shen, H. Fujii and K. Nogi: Acta Mater., 2006, vol. 54, pp. 1559-1569.

    CAS  Google Scholar 

  45. M. Dong, T. Liu, J. Liao, Y.-B. Xiao, Y. Yuan and Q. Wang: J. Alloy. Compd., 2016, vol. 689, pp. 1020-1027.

    CAS  Google Scholar 

  46. I. Kaban, S. Gruner and W. Hoyer: J. Non-Cryst. Solids, 2007, vol. 353, pp. 3717-3721.

    CAS  Google Scholar 

  47. P. Terzieff and R. Lück: J. Alloy. Compd., 2003, vol. 360, pp. 205-209.

    CAS  Google Scholar 

  48. V. Sidorov, I. Polovov, B. Rusanov, N. Katkov, V. Mikhailov, P. Popel, K. Maksimtsev, A. Mukhamadeev and G. Patronov: J. Alloy. Compd., 2019, vol. 787, pp. 1345-1348.

    CAS  Google Scholar 

  49. Y. Zhao, Y. Wang, Y. Zhou and P. Shen: Scripta Mater., 2011, vol. 64, pp. 229-232.

    CAS  Google Scholar 

  50. H. Fujii and S. Izutani: J. Mater. Sci., 2012, vol. 47, pp. 8387-8394.

    CAS  Google Scholar 

  51. C. Sun, H. Geng, Z. Yang, J. Zhang and R. Wang: Mater. Charact., 2005, vol. 55, pp. 383-387.

    CAS  Google Scholar 

  52. T. Mao, X. Bian, S. Morioka, Y. Wu, X. Li and X. Lv: Phys. Lett. A, 2007, vol. 366, pp. 155-159.

    CAS  Google Scholar 

  53. H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno and K. Kishio: ISIJ Int., 2003, vol. 43, pp. 942-949.

    CAS  Google Scholar 

  54. W. Chester: J. Fluid Mech., 1961, vol. 10, pp. 459-465.

    Google Scholar 

  55. W. Chester and D.W. Moore: J. Fluid Mech., 1961, vol. 10, pp. 466-472.

    Google Scholar 

  56. O.V. Voinov: Fluid Dynam., 1976, vol. 11, pp. 714-721.

    Google Scholar 

  57. Q. Wang, C.-J. Wang, T. Liu, K. Wang and J.-C. He: J. Mater. Sci., 2007, vol. 42, pp. 10000-10006.

    CAS  Google Scholar 

  58. J.M. Molina, R. Voytovych, E. Louis and N. Eustathopoulos: Int. J. Adhes. Adhes., 2007, vol. 27, pp. 394-401.

    CAS  Google Scholar 

  59. I.F. Bainbridge and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3901-3909.

    Google Scholar 

  60. Y. Fujimura and M. Iino: J. Appl. Phys., 2008, vol. 103, 124903.

    Google Scholar 

  61. C. Li, L. Chen and Z. Ren: J. Mol. Liq., 2013, vol. 181, pp. 51-54.

    CAS  Google Scholar 

  62. H. Yasuda, I. Ohnaka, Y. Ninomiya, R. Ishii, S. Fujita and K. Kishio: J. Cryst. Growth, 2004, vol. 260, pp. 475-485.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 51774086, 51574073, 51425401, and 51690161), Fundamental Research Funds for the Central Universities (Grant Nos. N180915002, N170902002, and N170908001), and Liaoning Innovative Research Team in University, China (Grant No. LT2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 9, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Liu, T., Lu, Z. et al. Wetting Transition in a Molten Metal and Solid Substrate System in High Magnetic Fields. Metall Mater Trans A 51, 2333–2343 (2020). https://doi.org/10.1007/s11661-020-05706-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05706-3

Navigation