Skip to main content
Log in

A Novel Rolling Approach to Refining the Microstructure and Enhancing the Mechanical Strength of Pure Aluminium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, a novel rolling method is proposed, which is called Multi-Rotational Flat Rolling (MRFR). The novelty of this work is the application of this special method of flat rolling to severely deform metal. The rolling is performed so as to preserve the square shape of the transverse section of the sample. During the process, the transverse-sectional area of the workpiece is gradually reduced, while the sample length is simultaneously increased. The experiment was carried out on commercially pure aluminium. An annealed sample was subjected MRFR up to the attainment of a maximum fourfold reduction in the transverse-sectional area. A microstructure analysis showed that the process resulted in a material having a refined microstructure of less than 1 µm. Nevertheless, the majority of the grain boundaries (over 70 pct) were of the low-angle type. As a result of the grain refinement and the increase in dislocation density, a clear improvement in the strength of the deformed material was observed. The increase in yield stress was 157 pct, the increase in ultimate tensile strength was about 56 pct, while the decrease in the value of elongation to failure was 12.8 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, vol. 31, pp. 691–701. https://doi.org/10.1007/s11661-000-0011-8.

    Article  Google Scholar 

  2. M. Gzyl, A. Rosochowski, S. Boczkal, L. Olejnik, and M.N. Katimon, Adv. Eng. Mater., 2015, vol. 18, 219–23. https://doi.org/10.1002/adem.201500363.

    Article  Google Scholar 

  3. X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Acta Mater. 2015, 98, 355–366. 10.1016/j.actamat.2015.07.039.

    Article  CAS  Google Scholar 

  4. M.Y. Murashkin, I. Sabirov, X. Sauvage, R.Z. Valiev, J. Mater. Sci. 2016, 51, 33–49. 10.1007/s10853-015-9354-9.

    Article  CAS  Google Scholar 

  5. K.D. Ralston, D. Fabijanic, N. Birbilis, Electrochim. Acta. 2011, 56, 1729–1736. 10.1016/j.electacta.2010.09.023.

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y. Zhu, Jom. 2006, 58, 33–39. 10.1007/s11837-016-1820-6.

    Article  CAS  Google Scholar 

  7. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 2006, 51, 881–981. 10.1016/j.pmatsci.2006.02.003.

    Article  CAS  Google Scholar 

  8. Y. Estrin, A. Vinogradov, Acta Mater. 2013, 61, 782–817. 10.1016/j.actamat.2012.10.038.

    Article  CAS  Google Scholar 

  9. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, et al., Mater. Res. Lett. 2016, 4, 1–21. 10.1080/21663831.2015.1060543.

    Article  CAS  Google Scholar 

  10. C. Phongphisutthinan, H. Tezuka, T. Sato, S. Takamori, Y. Ohsawa, Mater. Trans. 2012, 53, 885–892.

    Article  CAS  Google Scholar 

  11. K. Topolski, H. Garbacz, Mater. Sci. Eng. A. 2019, 739, 277–288. 10.1016/j.msea.2018.10.011.

    Article  CAS  Google Scholar 

  12. I. Zuiko, R. Kaibyshev, Mater. Sci. Eng. A. 2017, 702, 53–64. 10.1016/j.msea.2017.07.001.

    Article  CAS  Google Scholar 

  13. F. Rajabi, A. Zarei-hanzaki, M. Eskandari, S. Khoddam, Mater. Sci. Eng. A. 2013, 578, 90–95. 10.1016/j.msea.2013.04.023.

    Article  CAS  Google Scholar 

  14. X. Guo, Y. Deng, Y. Zhang, J. Zhang, X. Zhang, Mater. Charact. 2017, 128, 37–42. 10.1016/j.matchar.2017.03.022.

    Article  CAS  Google Scholar 

  15. S. Wronski, B. Bacroix, Acta Mater. 2014, 76, 404–412. 10.1016/j.actamat.2014.05.034.

    Article  CAS  Google Scholar 

  16. K. Topolski, W. Pachla, J. Mater. Sci. 2013, 48, 4543–4548. 10.1007/s10853-012-7086-7.

    Article  CAS  Google Scholar 

  17. W. Pachla, M. Kulczyk, S. Przybysz, J. Skiba, K. Wojciechowski, M. Przybysz, J. Mater. Process. Tech. 2015, 221, 255–268. 10.1016/j.jmatprotec.2015.02.027.

    Article  CAS  Google Scholar 

  18. A. Yamamoto, T. Kajiura, M. Tsukamoto, D. Okai, Procedia Eng. 2014, 81, 215–220. 10.1016/j.proeng.2014.09.153.

    Article  CAS  Google Scholar 

  19. N. Hansen, X. Huang, M.G. Møller, A. Godfrey, J. Mater. Sci. 2008, 43, 6254–6259. 10.1007/s10853-008-2874-9.

    Article  CAS  Google Scholar 

  20. Z.U.O. Fang-qing, J. Jian-hua, S. Ai-dang, Trans. Nonferrous Met. Soc. China. 2008, 18, 774–777.

    Article  Google Scholar 

  21. L. Su, C. Lu, H. Li, G. Deng, K. Tieu, Mater. Sci. Eng. A. 2014, 614, 148–155. 10.1016/j.msea.2014.07.032.

    Article  CAS  Google Scholar 

  22. S. Lee, T. Sakai, C.H. Lee, Y.H. Choa, Key Eng. Mater. 2006, 317–318, 327–330. https://doi.org/10.4028/www.scientific.net/kem.317-318.327.

    Article  Google Scholar 

  23. S.O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloys Compd. 2016, 658, 854–861. 10.1016/j.jallcom.2015.11.032.

    Article  CAS  Google Scholar 

  24. I. Topic, H.W. Hoppel, M. Goken, J. Mater. Sci. 2008, 43, 7320–7325. 10.1007/s10853-008-2754-3.

    Article  CAS  Google Scholar 

  25. A.M. Kliauga, V.L. Sordi, N.S. De Vincentis, R.E. Bolmaro, N. Schell, H.G. Brokmeier, Adv. Eng. Mater. 2017, 1700055, 1–10. 10.1002/adem.201700055.

    Article  CAS  Google Scholar 

  26. M. Orłowska, K. Topolski, T. Brynk, L. Olejnik, M. Lewandowska, Mater. Lett. 2018, 233, 270–273. 10.1016/j.matlet.2018.09.047.

    Article  CAS  Google Scholar 

  27. A.P. Zhilyaev, T.G. Langdon, Prog. Mater. Sci. 2008, 53, 893–979. 10.1016/j.pmatsci.2008.03.002.

    Article  CAS  Google Scholar 

  28. L. Olejnik, A. Rosochowski, M. Richert, Mater. Sci. Forum. 2008, 584–586, 108–113.

    Article  Google Scholar 

  29. X. Li, Y. Cao, L. He, Y. Guo, J. Cui, Steel Res. Int. 2013, 84, 1223–1229. 10.1002/srin.201300026.

    Article  CAS  Google Scholar 

  30. G. Krállics, J. Gubicza, Z. Bezi, I. Barkai, J. Mater. Process. Tech. 2014, 214, 1307–1315. 10.1016/j.jmatprotec.2014.02.015.

    Article  CAS  Google Scholar 

  31. W. Chrominski and M. Lewandowska: Acta Phys. Pol. A., vol. 2015(128), pp. 585–88. https://doi.org/10.12693/aphyspola.128.585.

    Article  CAS  Google Scholar 

  32. M. Reza Toroghinejad, F. Ashrafizadeh, and R. Jamaati: Mater. Sci. Eng. A, 2013, vol. 561, pp. 145–51. https://doi.org/10.1016/j.msea.2012.11.010.

    Article  CAS  Google Scholar 

  33. O.F. Higuera-Cobos, J.M. Cabrera, Mater. Sci. Eng. A. 2013, 571, 103–114. 10.1016/j.msea.2013.01.076.

    Article  CAS  Google Scholar 

  34. D.A. Hughes, N. Hansen, Acta Mater. 1997, 45, 3871–3886. 10.1016/S1359-6454(97)00027-X.

    Article  CAS  Google Scholar 

  35. T. Yu, N. Hansen, X. Huang, Acta Mater. 2013, 61, 6577–6586. 10.1016/j.actamat.2013.07.040.

    Article  CAS  Google Scholar 

  36. B.J. Scharnweber, W. Skrotzki, and C. Oertel: Adv. Eng. Mater., 2010, vol. 12, pp. 989–94. https://doi.org/10.1002/adem.201000067.

    Article  CAS  Google Scholar 

  37. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Mater. 2009, 57, 4198–4208. 10.1016/j.actamat.2009.05.017.

    Article  CAS  Google Scholar 

  38. Z. Guo, G. Zhao, X. Chen, Mater. Charact. 2016, 114, 79–87. 10.1016/j.matchar.2016.02.008.

    Article  CAS  Google Scholar 

  39. T. Lee, K.T. Park, D.J. Lee, J. Jeong, S.H. Oh, H.S. Kim, et al., Mater. Sci. Eng. A. 2015, 648, 359–366. 10.1016/j.msea.2015.09.062.

    Article  CAS  Google Scholar 

  40. O.V. Mishin, A. Godfrey, D. Juul Jensen, and N. Hansen: Acta Mater., 2013, vol. 61, pp. 5354–64. https://doi.org/10.1016/j.actamat.2013.05.024.

    Article  CAS  Google Scholar 

  41. N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Acta Mater. 2006, 54, 3055–3066. 10.1016/j.actamat.2006.02.046.

    Article  CAS  Google Scholar 

  42. Y. Miyajima, S. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Philos. Mag. 2010, 90, 4475–4488. 10.1080/14786435.2010.510453.

    Article  CAS  Google Scholar 

  43. R.A. Vandermeer, N. Hansen, Acta Mater. 2008, 56, 5719–5727. 10.1016/j.actamat.2008.07.038.

    Article  CAS  Google Scholar 

  44. Y. Ito, K. Edalati, Z. Horita, Mater. Sci. Eng. A. 2017, 679, 428–434. 10.1016/j.msea.2016.10.066.

    Article  CAS  Google Scholar 

  45. N. Balasubramanian and T.G. Langdon: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, vol. 47, pp. 5827–38. https://doi.org/10.1007/s11661-016-3499-2.

    Article  CAS  Google Scholar 

  46. I. Sabirov, M.Y. Murashkin, R.Z. Valiev, Mater. Sci. Eng. A. 2013, 560, 1–24. 10.1016/j.msea.2012.09.020.

    Article  CAS  Google Scholar 

  47. N. Hansen, Scr. Mater. 2004, 51, 801–806. 10.1016/j.scriptamat.2004.06.002.

    Article  CAS  Google Scholar 

  48. P. Bazarnik, Y. Huang, M. Lewandowska, T.G. Langdon, Mater. Sci. Eng. A. 2015, 626, 9–15. 10.1016/j.msea.2014.12.027.

    Article  CAS  Google Scholar 

  49. T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, et al., Scr. Mater. 2014, 78–79, 25–28. 10.1016/j.scriptamat.2014.01.020.

    Article  CAS  Google Scholar 

  50. M. Eizadjou, H.D. Manesh, K. Janghorban, J. Alloys Compd. 2009, 474, 406–415. 10.1016/j.jallcom.2008.06.161.

    Article  CAS  Google Scholar 

  51. E.A. El-Danaf, Mater. Sci. Eng. A. 2008, 487, 189–200. 10.1016/j.msea.2007.10.013.

    Article  CAS  Google Scholar 

  52. M. Lipińska, L. Olejnik, A. Pietras, A. Rosochowski, P. Bazarnik, J. Goliński, et al., Mater. Des. 2015, 88, 22–31. 10.1016/j.matdes.2015.08.129.

    Article  CAS  Google Scholar 

  53. S. Amirkhanlou, M. Askarian, M. Ketabchi, N. Azimi, N. Parvin, F. Carreño, Mater. Charact. 2015, 109, 57–65. 10.1016/j.matchar.2015.09.017.

    Article  CAS  Google Scholar 

  54. E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Mater. Sci. Eng. A. 2007, 458, 226–234. 10.1016/j.msea.2006.12.077.

    Article  CAS  Google Scholar 

  55. M. Kawasaki, S.N. Alhajeri, C. Xu, T.G. Langdon, Mater. Sci. Eng. A. 2011, 529, 345–351. 10.1016/j.msea.2011.09.039.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out within the statutory funds to the Faculty of Materials Science and Engineering of Warsaw University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Orłowska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 27, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orłowska, M., Topolski, K. & Lewandowska, M. A Novel Rolling Approach to Refining the Microstructure and Enhancing the Mechanical Strength of Pure Aluminium. Metall Mater Trans A 51, 830–844 (2020). https://doi.org/10.1007/s11661-019-05550-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05550-0

Navigation