Skip to main content
Log in

Study of Dry Sliding Wear Behavior of Hot-Rolled and Mushy-State Rolled Al-4.5Cu-5TiB2 In-Situ Composite with Analysis of Work Hardening and Subsurface Microstructure-Microtexture Evolution Using EBSD

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The response of the Al-4.5 wt pct Cu-5 wt pct TiB2 in-situ composite in the as-cast, hot-rolled, mushy-state rolled, or pre-cold rolled mushy-state rolled conditions to dry sliding wear tests at 1 m/s linear speed under 20N load has been examined. Further, microstructures and chemical compositions were simultaneously studied by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively, whereas the microtexture was quantified by electron backscattered diffraction (EBSD) analysis. An effort has been made to understand the relationship of CuAl2 and TiB2 particle distribution, microtexture, and hardness obtained through the aforementioned rolling processes with wear rates and post-wear surface profile. Additionally, the amount and depth of work hardening as a result of wear has been correlated with the subsurface microtexture evolution. Among the investigated wear-tested samples, the pre-cold rolled mushy-state rolled composite (PCMRC) has shown the best wear resistance due to high hardness being contributed by the highest low-angle boundary (LABs; misorientation angles < 15 deg) density, and a more homogeneous distribution of second-phase particles, which help in resisting the surface abrasion by forming a uniform mechanically mixed layer (MML). The MML primarily consists of the oxides of Al and Fe coming from the rotating steel disc during dry sliding wear tests, and acts as a lubricating medium, leading to the lowest coefficient of friction for the PCMRC. Examination of the subsurface of post-wear hot-rolled composite by EBSD has shown the presence of extremely deformed grains with a high density of LABs, thereby forming a fine sub-grain structure, which replaces its typical initial recrystallized equiaxed strain-free grain structure. In contrast, post-wear MRC and PCMRC samples, which exhibited a high density of LABs before the wear test, have shown a relatively lower density of LABs along with the formation of finer Al grains adjacent to the particles. Grain refinement in subsurface locations of MRC and PCMRC during wear is either ascribed to increase in misorientations of pre-existing LABs to angles > 15 deg due to considerable strain accumulation near TiB2 particles or particle-stimulated nucleation by dynamic recrystallization due to flash heat generation. Furthermore, a remarkable increase in the post-wear microhardness of the subsurface locations has been used to confirm that significant work hardening is caused by severe plastic deformation of the composite matrix during wear, which is in great coherence with the results of EBSD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The raw/processed data that have been used to generate these findings cannot be shared at this time, as the data also form part of ongoing research.

References

  1. J.W.H. Hunt: Materials Science Forum, 2000, vol. 331-337, pp. 71-84.

    Article  Google Scholar 

  2. S. Suresh, N. Shenbag, V. Moorthi: Procedia Engineering, 2012, vol. 38, pp. 89-97..

    Article  CAS  Google Scholar 

  3. Q.D. Qin, Y.G. Zhao, W. Zhou: Wear, 2008, vol. 264, pp. 654-661.

    Article  CAS  Google Scholar 

  4. M.B. Karam, A. AlperCerit, B. Selçuk, F. Nair: Wear, 2012, vol. 289, pp. 73–81

    Article  Google Scholar 

  5. A.P. Sannino, H.J. Rack: Wear, 1995, vol. 189, pp. 1-19.

    Article  CAS  Google Scholar 

  6. J. Singh, A. Chauhan: Ceramics International, 2016, vol. 42, pp. 56-81.

    Article  CAS  Google Scholar 

  7. A. Pramanik: Transactions of Nonferrous Metals Society of China, 2016, vol. 26, pp. 348-358.

    Article  CAS  Google Scholar 

  8. A. Sreenivasana, S. PaulVizhianb, N. D. Shivakumar, M. Munirajua, and M. Raguraman: Latin American journals of solids and structures, 2011, vol. 8, pp. 1-8.

    Article  Google Scholar 

  9. S. Basavarajappa, G. Chandramohan, R. Subramanian, and A. Chandrasekar: Mat.Sci., 2006, vol. 24, pp. 357-366.

    CAS  Google Scholar 

  10. B. Venkataraman, G. Sundararajan: Acta Materialia, 1996, vol. 44, pp. 451-460.

    Article  CAS  Google Scholar 

  11. M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan, G. Sundararajan: Metallurgical Transactions A, 1992, vol. 23, pp. 2833-2847.

    Article  Google Scholar 

  12. S. Wilson, A. T. Alpas: Wear, 1997, vol. 212, pp. 41-49.

    Article  CAS  Google Scholar 

  13. L. Cao, Y. Wang, C. K. Yao: Wear, 1990, vol. 140, pp. 273-77.

    Article  CAS  Google Scholar 

  14. C. A. Caracostas, W. A. Chiou, M. E. Fine, H. S. Cheng: Scripta Metallurgica et Materialia, 1992, vol. 27, pp. 167-172.

    Article  CAS  Google Scholar 

  15. C. A. Caracostas, W. A. Chiou, M. E. Fine, H. S. Cheng: Metallurgical and Materials Transactions A, 1997, vol. 28, pp. 491-502.

    Article  Google Scholar 

  16. A. Mandal, M. Chakraborty, B. S. Murty: Wear, 2007, vol. 262, pp. 160-166.

    Article  CAS  Google Scholar 

  17. S. Peddavarapu, R. Jayendra Bharathi: Materials Today: Proceedings, 2018, vol. 5, pp. 14507-14511.

    Article  CAS  Google Scholar 

  18. J. M. Shockley, E. F. Rauch, R. R. Chromik, S. Descartes: Wear, 2017, vol. 376-377, pp. 1411-1417.

    Article  Google Scholar 

  19. G. Huang, W. Hou, J. Li, Y. Shen: Surface and Coatings Technology, 2018, vol. 344, pp. 30-42.

    Article  CAS  Google Scholar 

  20. N. Soltani, H. R. JafariNodooshan, A. Bahrami, M. I. Pech-Canul, W. Liu, G. Wu: Materials & Design, 2014, vol. 53, pp. 774-781.

    Article  CAS  Google Scholar 

  21. I. G. Siddhalingeshwar, M. A. Herbert, M. Chakraborty, R. Mitra: Materials Science and Engineering: A, 2011, vol. 528, pp. 1787-1798.

    Article  Google Scholar 

  22. M. A. Herbert, R. Maiti, R. Mitra, M. Chakraborty: Wear, 2008, vol. 265, pp. 1606-1618.

    Article  CAS  Google Scholar 

  23. I. G. Siddhalingeshwar, D. Deepthi, M. Chakraborty, R. Mitra: Wear, 2011, vol. 271, pp. 748-759.

    Article  CAS  Google Scholar 

  24. K. Pavitra, R. Mitra: Materials Science and Engineering: A, 2012, vol. 557, pp. 84-91.

    Article  CAS  Google Scholar 

  25. B. N. Mordyuk, G. I. Prokopenko, Y. V. Milman, M. O. Lefimov, K. E. Grinkevych, A.V. Sameljuk, I.V. Tkachenko: Wear, 2014, vol. 319, pp. 84-95.

    Article  CAS  Google Scholar 

  26. M. R. Rosenberger, C. E. Schvezov, E. Forlerer: Wear, 2005, vol. 259, pp. 590-601.

    Article  CAS  Google Scholar 

  27. D. A. Rigney: Wear, 2000, vol. 245, pp. 1-9.

    Article  CAS  Google Scholar 

  28. X.Y. Li, K. N. Tandon: Wear, 1997, vol. 203-204, pp. 703-708.

    Article  Google Scholar 

  29. H. C. How, T. N. Baker: Wear, 1999, vol. 232, pp. 106-115.

    Article  CAS  Google Scholar 

  30. B. Venkataraman, G. Sundararajan: Acta Materialia, 1996, vol. 44, pp. 461-473.

    Article  CAS  Google Scholar 

  31. S.V. Prasad, J. R. Michael, T. R. Christenson: Scripta Materialia, 2003, vol. 48, pp. 255-260.

    Article  CAS  Google Scholar 

  32. M. A. Herbert, C. Sarkar, R. Mitra, M. Chakraborty: Metallurgical and Materials Transactions A, 2007, vol. 38, pp. 2110-2126.

    Article  Google Scholar 

  33. M. Mandal, R. Mitra: JOM, 2016, vol. 68, pp. 1902-1908.

    Article  CAS  Google Scholar 

  34. M. Mandal, R. Mitra: Materials Science and Engineering: A, 2019, vol. 760, pp. 88-104.

    Article  CAS  Google Scholar 

  35. M. Mandal, R. Mitra: Materials Characterization, 2018, vol. 146, pp. 267-278.

    Article  CAS  Google Scholar 

  36. F. J. Humphreys: Acta Metallurgica, 1977, vol. 25, pp. 1323-1344.

    Article  CAS  Google Scholar 

  37. J. Jiang, F. H. Stott, M. M. Stack: Wear, 1994, vol. 176, pp. 185-194.

    Article  CAS  Google Scholar 

  38. R. Saraswat, A. Yadav, R. Tyagi: Materials Today: Proceedings, 2018, vol. 5, pp. 16963-16972.

    CAS  Google Scholar 

  39. C. M. Rao, K. Mallikarjuna Rao: Materials Today: Proceedings, 2018, vol. 5, pp. 268-275.

    CAS  Google Scholar 

  40. V. Mohanavel, K. Rajan, S. SureshKumar, A. Chockalingam, A. Roy, T. Adithiyaa: Materials Today: Proceedings, 2018, vol. 5, pp. 1740-1746.

    CAS  Google Scholar 

  41. S. Dayanand, S. Babu, B. V. Auradi: Materials Today: Proceedings, 2018, vol. 5, pp. 22536-22542.

    CAS  Google Scholar 

  42. M. Kawamoto, K. Okabayashi: Wear, 1980, vol. 58, pp. 59-95.

    Article  CAS  Google Scholar 

  43. J. F. Archard: Wear, 1959, vol. 2, pp. 438-455.

    Article  Google Scholar 

  44. H.V. Atkinson, K. Burke, G. Vaneetveld: Materials Science and Engineering: A, 2008, vol. 490, pp. 266-276.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the technicians of the melting casting lab, mechanical testing lab, and workshop of the Metallurgical and Materials engineering department for extending their help during the experimental works. The authors are grateful to the Central Research Facility (CRF) of Indian Institute of Technology Kharagpur for letting us perform all the required characterizations. The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Mitra, R. Study of Dry Sliding Wear Behavior of Hot-Rolled and Mushy-State Rolled Al-4.5Cu-5TiB2 In-Situ Composite with Analysis of Work Hardening and Subsurface Microstructure-Microtexture Evolution Using EBSD. Metall Mater Trans A 50, 5356–5372 (2019). https://doi.org/10.1007/s11661-019-05406-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05406-7

Navigation