Skip to main content
Log in

Size Effect in the Uniaxial Compression of Polycrystalline Ni Nanopillars with Small Number of Grains

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations are used to investigate the compression of nickel nanopillars in the ranges from 3 to 18 nm grain size (d) and from 12 to 30 nm specimen size (D). The results reveal that grain size play a more significant role than specimen size. There is a strong grain size effect—smaller is weaker—on the yield as well as the flow stress. The deformation is mainly governed by grain boundary (GB) motion for d < 12 nm, while for \( d \ge 12\;{\text{nm}} \), it is governed by dislocation activity. When the grain size is small enough, the deformation of nanopillar is specimen size independent. For larger grain sizes, an irregular fluctuation in flow stress is observed resulting from sensitivity to grain orientation, fracture, and coalescence. Extended dislocations and twins play important roles in grain-shape evolution during compression. Due to the high fraction of surface grains, the “theory based on GB-shear and surface layer” is found inapplicable to explain the size effect in the plasticity of specimens with small number of grains across their diameter. Consequently, an expression of flow stress is proposed that includes effects of grain and specimen sizes, and the specimen-to-grain size ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Gleiter: Progress in Materials Science, 1989, vol. 33, pp. 223-315.

    Article  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson: Progress in Materials Science, 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  3. H. van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Physical Review B, 1999, vol. 60, pp. 22-25.

    Article  Google Scholar 

  4. E.O. Hall: Proceedings of the Physical Society. Section B, 1951, vol. 64, pp. 747.

    Article  Google Scholar 

  5. N.L. Petch: The Journal of the Iron and Steel Institute, 1953, vol. 174, pp. 25-28.

    Google Scholar 

  6. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter: Scripta Metall. 1989, vol. 23, pp. 1679–1683.

    Article  Google Scholar 

  7. J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen: Nature, 1998, vol. 39, pp. 561.

    Article  Google Scholar 

  8. G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim: Scripta Metallurgica et Materialia, 1992, vol. 26, pp. 1879-1883.

    Article  Google Scholar 

  9. J. Schiøtz, K.W. Jacobsen: Science, 2003, vol. 301, pp. 1357–1359.

    Article  Google Scholar 

  10. A. Kunz, S. Pathak, and J.R. Greer: Acta Materialia, 2011, vol. 59, pp. 4416-4424.

    Article  Google Scholar 

  11. D. Jang, and J.R. Greer: Scripta Materialia, 2011, vol. 64, pp. 77-80.

    Article  Google Scholar 

  12. X.X. Chen, and A.H.W. Ngan: Scripta Materialia, 2011, vol. 64, pp. 717-720.

    Article  Google Scholar 

  13. X.W. Gu, C.N. Loynachan, Z. Wu, Y.W. Zhang, D.J. Srolovitz, and J.R. Greer: Nano letters, 2012, vol. 12, pp. 6385-6392.

    Article  Google Scholar 

  14. T. Nagoshi, M. Mutoh, T.F.M. Chang, T. Sato, and M. Sone: Materials Letters, 2014, vol. 117, pp. 256-259.

    Article  Google Scholar 

  15. J.Y. Zhang, K. Kishida, and H. Inui: International Journal of Plasticity, 2017, vol. 92, pp. 45-56.

    Article  Google Scholar 

  16. J.R. Greer, W.C. Oliver, and W.D. Nix: Acta Materialia, 2005, vol.53, pp. 1821-1830.

    Article  Google Scholar 

  17. J.R. Greer, and W.D. Nix: Physical Review B, 2006, vol, 73, pp. 245410.

    Article  Google Scholar 

  18. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Scripta Materialia, 2007, vol. 56, pp. 313-316.

    Article  Google Scholar 

  19. S.I. Rao, D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, and C. Woodward: Philosophical Magazine, 2007, vol. 87, pp. 4777-4794.

    Article  Google Scholar 

  20. S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, and C. Woodward: Acta Materialia, 2008, vol. 56, pp. 3245-3259.

    Article  Google Scholar 

  21. S. Xu, Y.F. Guo, and A.H.W. Ngan: International Journal of Plasticity, 2013, vol. 43, pp. 116-127.

    Article  Google Scholar 

  22. F. Hammami, and Y. Kulkarni: Journal of Applied Physics, 2014, vol. 116, pp. 033512.

    Article  Google Scholar 

  23. Y. Mohammadreza, and G.Z. Voyiadjis: Acta Materialia, 2016, vol. 121, pp. 190-201.

    Article  Google Scholar 

  24. A.T. Jennings, M.J. Burek, and J.R. Greer: Physical review letters, 2010, vol. 104, pp. 135503.

    Article  Google Scholar 

  25. Z.T. Xu, L.F. Peng, M.W. Fu, and X.M. Lai: International Journal of Plasticity, 2015, vol. 68, pp. 34-54.

    Article  Google Scholar 

  26. X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, and J. Sun: International Journal of Plasticity, 2017, vol. 95, pp. 264-277.

    Article  Google Scholar 

  27. X.X. Chen, and A.H.W. Ngan: Materials Science and Engineering A, 2012, vol. 539, pp. 74-84.

    Article  Google Scholar 

  28. P.S.S. Leung, and A.H.W. Ngan: Scripta Materialia, 2013, vol. 69, pp. 235-238.

    Article  Google Scholar 

  29. X. Liu, F. Yuan, and Y. Wei: Applied Surface Science, 2013, vol. 279, pp. 159-166.

    Article  Google Scholar 

  30. Y. Zhu, Z. Li, and M. Huang: Journal of Applied Physics, 2014, vol. 115, pp. 233508.

    Article  Google Scholar 

  31. Y.X. Zhu, Z.H. Li, and M.S. Huang: Scripta Materialia, 2013, vol. 68, pp. 663-666.

    Article  Google Scholar 

  32. P.M. Derlet, and H. van Swygenhoven: Physical Review B, 2003, vol. 67, pp. 014202.

    Article  Google Scholar 

  33. Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz: Acta Materialia, 2011, vol. 59, pp. 6890-6900.

    Article  Google Scholar 

  34. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Materialia, 2002, vol. 50, pp. 61-73.

    Article  Google Scholar 

  35. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Physical Review B, 1999, vol. 59, pp. 3393-3407.

    Article  Google Scholar 

  36. S. Plimpton: Journal of Computational Physics, 1995, vol. 117, pp. 1-19.

    Article  Google Scholar 

  37. A. Stukowski: Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, pp. 015012.

    Article  Google Scholar 

  38. J.D. Honeycutt, and H.C. Andersen: The Journal of Physical Chemistry, 1987, vol. 91, pp. 4950-4963.

    Article  Google Scholar 

  39. H. Tsuzuki, P.S. Branicio, and J.P. Rino: Computer Physics Communications, 2007, vol. 177, pp. 518-523.

    Article  Google Scholar 

  40. D.E. Spearot, and D. I. McDowell: Journal of Engineering Materials and Technology-Transactions of the ASME, 2009, vol 131, pp. 041204.

    Article  Google Scholar 

  41. X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877-880.

    Article  Google Scholar 

  42. F. Shimizu, S. Ogata, and J. Li: Materials Transactions, 2007, vol. 48, pp. 2923-2927.

    Article  Google Scholar 

  43. T.J. Rupert: Journal of Applied Physics, 2013, vol. 114, pp. 033527.

    Article  Google Scholar 

  44. C.A. Schuh, T.G. Nieh, and T. Yamasaki: Scripta Materialia, 2002, vol. 46, pp. 735-740.

    Article  Google Scholar 

  45. C.E. Carlton, and P.J. Ferreira: Acta Materialia, 2007, vol. 55, pp. 3749-3756.

    Article  Google Scholar 

  46. C.J. Wang, C.J. Wang, J. Xu, P. Zhang, D.B. Shan, and B. Guo: Materials Science and Engineering A, 2015, vol. 636, pp. 352-360.

    Article  Google Scholar 

  47. J.L. Wang, M.W. Fu, and S.Q. Shi: Materials & Design, 2017, vol. 131, pp. 69-80.

    Article  Google Scholar 

  48. J.Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, and E. Ma: Physical review B, 2010, vol. 81, pp. 172104.

    Article  Google Scholar 

  49. X. L. Wu, and Y. T. Zhu: Physical review letters, 2008, vol. 101, pp. 025503.

    Article  Google Scholar 

  50. Y. T. Zhu, X. Z. Liao, X. L. Wu, and J. Narayan: Journal of Material Science, 2013, vol. 48, pp. 4467-4475.

    Article  Google Scholar 

  51. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Progress in Materials Science, 2012, vol. 57, pp. 1-62.

    Article  Google Scholar 

  52. H. Conrad: Metallurgical and Materials Transaction A, 2004, vol. 35, pp. 2681-2695.

    Article  Google Scholar 

  53. U. Engel, and R. Eckstein: Journal of Materials Processing Technology, 2002, vol. 125, pp. 35-44.

    Article  Google Scholar 

  54. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, and U. Engel: CIRP Annals-Manufacturing Technology, 2001, vol. 50, pp. 445-462.

    Article  Google Scholar 

  55. X. Lai, L. Peng, P. Hu, S. Lan, and J. Ni: Computational Materials Science, 2008, vol. 43, pp. 1003-1009.

    Article  Google Scholar 

  56. R.J. Asaro, and S. Suresh: Acta Materialia, 2005, vol. 53, pp. 3369-3382.

    Article  Google Scholar 

  57. A. S. Argon, and S. Yip: Philosophical Magazine Letters, 2006, vol. 86, pp. 713-720.

    Article  Google Scholar 

  58. N.L. Okamoto, D. Kashioka, T. Hirato, and H. Inui: International Journal of Plasticity, 2014, vol. 56, pp. 173-183.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (Grant No. 51675127). The access to software and hardware for atomistic simulations was provided by a computational resource grant #PAS0172 from the Ohio Super Computer Center, Columbus, Ohio, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Xu, C., Shivpuri, R. et al. Size Effect in the Uniaxial Compression of Polycrystalline Ni Nanopillars with Small Number of Grains. Metall Mater Trans A 50, 4462–4479 (2019). https://doi.org/10.1007/s11661-019-05334-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05334-6

Navigation