Skip to main content
Log in

Effects of Isothermal Aging Process on Microstructure and Mechanical Properties of Stellite 6 Coatings by Plasma Arc Cladding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stellite 6 is widely used in high-temperature environments; the evolution of its microstructure and mechanical properties during high-temperature exposure is essential for long-term service. In our work, Stellite 6 claddings were manufactured by plasma arc cladding, followed by a long-term isothermal aging process at 700 °C to imitate high-temperature service. The microstructures were characterized using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). It was observed that the microstructure of the as-clad coating mainly consisted of γ-Co (cobalt) and carbide eutectics. During isothermal aging at 700 °C, the γ-Co was found to transform to ε-Co. Moreover, fine M23C6 particles were observed to precipitate along the stacking faults of ε-Co. The eutectic carbides also experienced remarkable change; M23C6 grew along the edge of the M7C3 block, indicating the decomposition of M7C3, which might result in the dispersal of eutectic after aging for 500 hours. The microhardness and wear tests indicated that the aging process was beneficial in enhancing the mechanical properties both at room temperature (RT) and 700 °C. According to the morphology of the worn surface, the enhancement of wear performance mainly resulted from the restriction effect of dispersal eutectic carbides and timely removal of oxide. It was also found that the wear mode gradually transformed from adhesive wear to abrasive wear with aging time, which mainly resulted from the increase in the amount of precipitations cut from the matrix, and they acted as the friction pair during the wear test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.D. Conceição and A.S.C.M. D’Oliveira: Surf. Coat. Technol., 2016, vol. 288, pp. 69–78.

    Article  Google Scholar 

  2. H.X. Deng, S. Tsuruoka, H.C. Yu, and B. Zhong: Surf. Coat. Technol., 2012, vol. 204 (23), pp. 3927–34.

    Article  Google Scholar 

  3. H. Kashani, A. Amadeh, and A. Ohadizadeh: Mater. Sci. Eng. A, 2006, vol. 435, pp. 474–77.

    Article  Google Scholar 

  4. M.M. Ferozhkhan, K.G. Kumar, and R. Ravibharath: Arabian J. Sci. Eng., 2017, vol. 42 (5), pp. 2067–74.

    Article  Google Scholar 

  5. Š. Houdková, Z. Pala, E. Smazalová, M. Vostřák, and Z. Česánek: Surf. Coat. Technol., 2017, vol. 318, pp. 129–41.

    Article  Google Scholar 

  6. V. Fallah, M. Alimardani, S.F. Corbin, and A. Khajepour: Appl. Surf. Sci., 2010, vol. 257 (5), pp. 1716–23.

    Article  Google Scholar 

  7. R.R. Bharath, R. Ramanathan, B. Sundararajan, and P.B. Srinivasan: Mater. Des., vol. 29 (9), pp. 1725–31.

  8. S.A.A. Dilawary, A. Motallebzadeh, A.H. Paksoy, M. Afzal, and E. Atar: Surf. Coat. Technol., 2017, vol. 317, pp. 110–16.

    Article  Google Scholar 

  9. H.F. López and A.J. Saldivar-Garcia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 8–18.

    Article  Google Scholar 

  10. Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, and Y. Li: Acta Mater., 2013, vol. 61 (5), pp. 1648–61.

    Article  Google Scholar 

  11. T.L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.G. Yang: Comput. Mater. Sci., 2016, vol. 121, pp. 86–96.

    Article  Google Scholar 

  12. B. Ren, M. Zhang, C. Chen, X. Wang, T. Zou, and Z. Hu: J. Mater. Eng. Perform., 2017, vol. 26, pp. 1–10.

    Article  Google Scholar 

  13. S. Zangeneh, H.R. Lashgari, M. Saghafi, and M. Karshenas: Mater. Sci. Eng. A, 2010, vol. 527 (24), pp. 6494–6500.

    Article  Google Scholar 

  14. E.E. Gdoutos: Fracture of Nano and Engineering Materials and Structures, Proc. 16th Eur. Conf. of Fracture (ECF16), Springer Netherlands, 2006, pp. 889–90.

  15. Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, and Y. Koizumi: Wear, 2014, vol. 310 (1–2), pp. 51–62.

    Article  Google Scholar 

  16. K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, and T. Koziel: J. Alloys Compd., 2017, vol. 698, pp. 673–84.

    Article  Google Scholar 

  17. W.M. Gui, H.Y. Zhang, M. Yang, T. Jin, X.F. Sun, and Q. Zheng: J. Alloys Compd., 2017, vol. 695, pp. 1271–78.

    Article  Google Scholar 

  18. V.M. Desai, C.M. Rao, T.H. Kosel, and N.F. Fiore: Wear, 1984, vol. 94 (1), pp. 89–101.

    Article  Google Scholar 

  19. D.Z. Yang, C. Hua, S.Z. Qu, J.J. Xu, J.M. Chen, C. Yu, and H. Lu: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1153–61.

    Article  Google Scholar 

  20. C.A. Scheider, W.S. Rasband, and K.W. Eliceiri: Nat. Meth., 2012, vol. 9, pp. 671–75.

    Article  Google Scholar 

  21. A. Boyde, P.G. Howell, and S.J. Jones: J. Microsc., 2011, vol. 101 (3), pp. 261–66.

    Article  Google Scholar 

  22. A.J Saldívar and H.F López: Scripta Mater., 2001, vol. 45 (4), pp. 427–33.

  23. S. Hamar-Thibault, M. Durand-Charre, and B. Andries: Metall. Trans. A, 1982, vol. 13A, pp. 545–50.

    Article  Google Scholar 

  24. J.R. Lane and N.J. Grant: Trans. ASM, 1952, vol. 44, pp. 113–37.

    Google Scholar 

  25. R.W. Revie: Uhlig’s Corrosion Handbook, 3rd ed, Wiley, Hoboken, NJ, 2011 pp. 747–56.

    Book  Google Scholar 

  26. D.T. Cavanaugh: Grad. Theses Diss., 2015, vol. 14786, pp. 1–86.

    Google Scholar 

  27. M.K. Brun, M. Lee, and F. Gorsler: Wear, 1985, vol. 104 (1), pp. 21–29.

    Article  Google Scholar 

  28. W.S.D. Silva, R.M. Souza, J.D.B. Mello, and H. Goldenstein: Wear, 2011, vol. 271 (9–10), pp. 170–81.

    Google Scholar 

  29. K. Feng, Y. Chen, P. Deng, Y. Li, H. Zhao, and F. Lu: J. Mater. Process. Technol., 2017, vol. 243, pp. 170–81.

    Article  Google Scholar 

  30. H. Torres, M. Varga, and M.R. Ripoll: Mater. Sci. Eng., A, 2016, vol. 671 pp. 170–81.

  31. B. Kaplan, A. Markström, S. Norgren, and M. Selleby: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4820–28.

    Article  Google Scholar 

  32. C.C. Viáfara and A. Sinatora: Wear, 2011, vol. 271 (9), pp. 1689–1700.

    Article  Google Scholar 

  33. M.S. Sawant and N.K. Jain: Wear, 2017, vols. 378–379, pp. 155–64.

    Article  Google Scholar 

  34. D. Kesavan and M. Kamaraj: Surf. Coat. Technol., 2010, vol. 204 (24), pp. 4034–43.

    Article  Google Scholar 

  35. B. Briscoe and I.M. Hutchings: Tribology: Friction and Wear of Engineering Materials, 2nd ed., ScienceDirect, 1992, pp. 79–105.

Download references

Acknowledgments

The authors acknowledge the support of the National Nature Science Foundation of China (Grant Nos. 51875354 and 51575347) and the Shanghai Industrial Strong Foundation Project (Grant No. GYQJ-2018-2-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Yu or Hao Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Wang, Q., Wei, X. et al. Effects of Isothermal Aging Process on Microstructure and Mechanical Properties of Stellite 6 Coatings by Plasma Arc Cladding. Metall Mater Trans A 50, 2807–2816 (2019). https://doi.org/10.1007/s11661-019-05196-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05196-y

Navigation