Skip to main content
Log in

Plasma Electrolytic Oxidation (PEO) Process on Commercially Pure Ti Surface: Effects of Electrolyte on the Microstructure and Corrosion Behavior of Coatings

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study investigates the ceramic oxide coatings formed on commercially pure Ti substrate via plasma electrolytic oxidation (PEO) technique in electrolytes with different chemical compositions. The effects of electrolyte on the discharge characteristics, macro- and micro-structure, thickness, phase compositions, and corrosion behaviors of coatings were evaluated. Five kinds of electrolytes based on the sodium salt compounds including aluminate, phosphate, silicate, aluminate-phosphate, and aluminate-silicate were used. The PEO processes were carried out at fixed voltage (420 V) for 180 seconds. The morphology and phase composition of samples were investigated using scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. The corrosion behavior of specimens was analyzed in a 3.5 wt pct NaCl solution using the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The results showed that the most uniform and dense structure with less porosity was obtained in the coating prepared in aluminate-phosphate-based electrolyte. This coating consisted of TiO2 (Rutile and Anatase) and TiAl2O5 phases. Also, it was confirmed that the noblest corrosion potential and lowest corrosion current density, and consequently, the best corrosion behavior (22.96 × 107 Ω cm2), were observed for aluminate-phosphate-based electrolyte. The Mott–Schottky analysis exhibited that all samples had n-type semiconducting behavior. The coating prepared in aluminate-phosphate-based electrolyte possessed the lowest donor densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Angelo, Ö. Bayrak, I. Karaman, and A. Celik, Surf. Coat. Technol., 2011, vol. 205, pp. S537-S542.

    Article  Google Scholar 

  2. M. Molaei, A. Fattah-Alhosseini, and S. O. Gashti, Metall. Mater. Trans. A, 2018, vol. 49, pp. 368-375.

    Article  Google Scholar 

  3. YL Cheng, XQ Wu, Z Xue, E Matykina, P Skeldon, and GE Thompson, Surf. Coat. Technol., 2013, vol. 217, pp. 129-139.

    Article  Google Scholar 

  4. S. Hariprasad, M. Ashfagh, T. Arunnellaiappan, M. Harilal, and N. Rameshbabu, Surf. Coat. Technol., 2016, vol. 292, pp. 20-29.

    Article  Google Scholar 

  5. T.E. Park, H.Ch. Choe, and W.A. Brantley, Surf. Coat. Technol., 2013, vol. 235, pp. 706-713.

    Article  Google Scholar 

  6. M. Mu, J. Liang, X. Zhou, and Q. Xiao, Surf. Coat. Technol., 2013, vol. 214, pp. 124-130.

    Article  Google Scholar 

  7. M. Aliofkhazraei, R. S. Gharabagh, M. Teimouri, M. Ahmadzadeh, Gh. B. Darband, and H. Hasannejad, J. Alloys Compd., 2016, vol. 685, pp. 376-383.

    Article  Google Scholar 

  8. M. Shokouhfar and S.R. Allahkaram, Surf. Coat. Technol., 2016, vol. 291, pp. 396-405.

    Article  Google Scholar 

  9. S. K. Yazıcı, F. Muhaffel, and M. Baydogan, Appl. Surf. Sci., 2014, vol. 318, pp. 10-14.

    Article  Google Scholar 

  10. S. Sarbishei, M.A. Faghihi Sani, and M.R. Mohammadi, Ceram. Int., 2016, vol. 42, pp. 8789-8797.

    Article  Google Scholar 

  11. Ch.Ch. Tseng, J.L. Lee, T.H. Kuo, Sh.N. Kuo, and K.H. Tseng, Surf. Coat. Technol., 2012, vol. 206, pp. 3437-3443.

    Article  Google Scholar 

  12. E. Matykina, A. Berkani, P. Skeldon, and G.E. Thompson, Electrochim. Acta, 2007, vol. 53, pp. 1987-1994.

    Article  Google Scholar 

  13. M. Babaei, Ch. Dehghanian, and M. Babaei, Surf. Coat. Technol., 2015, vol. 279, pp. 79-91.

    Article  Google Scholar 

  14. S. Durdu, Ö. F. Deniz, I. Kutbay, and M. Usta, J. Alloys Compd., 2013, vol. 551, pp. 422-429.

    Article  Google Scholar 

  15. S. Stojadinović, R. Vasilić, M. Petković, and L Zeković, Surf. Coat. Technol., 2011, vol. 206, pp. 575-581.

    Article  Google Scholar 

  16. X. Shi, L. Xu, and Q. Wang, Surf. Coat. Technol., 2010, vol. 205, pp. 1730-1735.

    Article  Google Scholar 

  17. M. Khorasanian, A. Dehghan, M.H. Shariat, M.E. Bahrololoom, and S. Javadpour, Surf. Coat. Technol., 2011, vol. 206, pp. 1495-1502.

    Article  Google Scholar 

  18. O.A. Galvis, D. Quintero, J.G. Castaño, H. Liu, G.E. Thompson, P. Skeldon, and F. Echeverría, Surf. Coat. Technol., 2015, vol. 269, pp. 238-249.

    Article  Google Scholar 

  19. F.Y. Teng, I.Ch. Tai, M.W. Wang, Y.J. Wang, Ch.Ch. Hung, and Ch.Ch. Tseng, J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 1331-1337.

    Article  Google Scholar 

  20. H.P. Teng, Ch.J. Yang, J.F. Lin, Y.H. Huang, and F.H. Lu, Electrochim. Acta, 2016, vol. 193, pp. 216-224.

    Article  Google Scholar 

  21. H. Tang, Q. Sun, T. Xin, Ch. Yi, Zh. Jiang, and F. Wang, Curr. Appl. Phys., 2012, vol. 12, pp. 284-290.

    Article  Google Scholar 

  22. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, A.C. Bose, V. Muthupandi, N.K. Babu, and S. Subramanian, Appl. Surf. Sci., 2012, vol. 258, pp. 6853-6863.

    Article  Google Scholar 

  23. A. Fattah-alhosseini, S. O. Gashti, and M. Molaie, J. Mater. Eng. Perform., 2018, vol. 27, pp. 825-834.

    Article  Google Scholar 

  24. M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Appl. Surf. Sci., 2012, vol. 258, pp. 2416-2423.

    Article  Google Scholar 

  25. Y.H. Wang, Zh.G. Liu, J.H. Ouyang, Y.M. Wang, and Y. Zhou, J. Alloys Compd., 2015, vol. 647, pp. 431-437.

    Article  Google Scholar 

  26. M. Shokouhfar, C. Dehghanian, and A. Baradaran, Appl. Surf. Sci., 2011, vol. 257, pp. 2617-2624.

    Article  Google Scholar 

  27. A.L. Yerokhin, X. Nie, A. Leyland, and A. Matthews, Surf. Coat. Technol., 2000, vol. 130, pp. 195-206.

    Article  Google Scholar 

  28. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, M. Sandhyarani, A.C. Bose, V. Muthupandi, and S. Subramanian, Electrochim. Acta, 2013, vol. 105, pp. 468-480.

    Article  Google Scholar 

  29. H. Dong, ed.: Surface Engineering of Light Alloys, Wood head Publishing Limited, Cambridge, 2010, p. 126.

  30. F. Liu, J.L. Xu, D.Z. Yu, F.P. Wang, and L.C. Zhao, Mater. Chem. Phys., 2010, vol. 121, pp. 172-177.

    Article  Google Scholar 

  31. J. Liang, P. Bala Srinivasan, C. Blawert, M. Störmer, W. Dietzel, Electrochim. Acta, 2009, vol. 54, pp. 3842-3850.

    Article  Google Scholar 

  32. A. Fattah-alhosseini and M. SabaghiJoni, J. Mater. Eng. Perform., 2015, vol. 24, pp. 3444-3452.

    Article  Google Scholar 

  33. K.R. Shin, Y.S. Kim, G.W. Kim, H.W. Yang, Y.G. Ko, and D.H. Shin, Appl. Surf. Sci., 2015, vol. 347, pp. 574-582.

    Article  Google Scholar 

  34. Zh. Yao, B. Hu, Q. Shen, A. Niu, Zh. Jiang, P. Su, and P. Ju, Surf. Coat. Technol., 2014, vol. 253, pp. 166-170.

    Article  Google Scholar 

  35. F. Liu, J. Yu, Y. Song, D. Shan, E.H. Han, Mater. Chem. Phys., 2015, vol. 162, pp. 452-460.

    Article  Google Scholar 

  36. P. Zhang, X. Nie, H. Hua, Y. Liu, Surf. Coat. Technol., 2010, vol. 205, pp. 1508-1514.

    Article  Google Scholar 

  37. M. Roknian, A. Fattah-alhosseini, and S. O. Gashti, J. Mater. Sci. Technol., 2018, vol. 27, pp. 1343-1351.

    Google Scholar 

  38. VS de Viteri, R Bayón, A Igartua, G Barandika, JE Moreno, CP-J Peremarch, and MM Pérez, Appl. Surf. Sci., 2016, vol. 367, pp. 1-10.

    Article  Google Scholar 

  39. A. Kazek-Kęsik, G. Dercz, K. Suchanek, I. Kalemba-Rec, J. Piotrowski, and W. Simka, Surf. Coat. Technol., 2015, vol. 276, pp. 59-69.

    Article  Google Scholar 

  40. H.Y. Wang, R.F. Zhu, Y.P. Lu, G.Y. Xiao, K. He, Y.F. Yuan, X.N. Ma, and Y. Li, Appl. Surf. Sci., 2014, vol. 292, pp. 204-212.

    Article  Google Scholar 

  41. A. Fattah-Alhosseini, M. Vakili-Azghandi, and M. K. Keshavarz: Acta Metall. Sin. (Engl. Lett.), 2016, vol. 29, pp. 274–81.

  42. Zh. Yao, Zh. Jiang, Sh. Xin, X. Sun, and X. Wu, Electrochim. Acta, 2005, vol. 50, pp. 3273-3279.

    Article  Google Scholar 

  43. Zh. Yao, Zh. Jiang, X. Sun, Sh. Xin, and Zh. Wu, Mater. Chem. Phys., 2005, vol. 92, pp. 408-412.

    Article  Google Scholar 

  44. Zh. Yao, Zh. Jiang, and F. Wang, Electrochim. Acta, 2007, vol. 52, pp. 4539-4546.

    Article  Google Scholar 

  45. R.O. Hussein, X. Nie, and D.O. Northwood, Mater. Chem. Phys., 2012, vol. 134, pp. 484-492.

    Article  Google Scholar 

  46. M. Babaei, Ch. Dehghanian, and M. Vanaki, Appl. Surf. Sci., 2015, vol. 357, pp. 712-720.

    Article  Google Scholar 

  47. J. Ma, C.Z. Wang, C.L. Ban, C.Z. Chen, and H.M. Zhang, Vacuum, 2016, vol. 125, pp. 48-55.

    Article  Google Scholar 

  48. D.R. Lide, ed.: CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1985.

  49. D.D. Macdonald, J. Electrochem. Soc., 2006, vol. 153, pp. B213-B224.

    Article  Google Scholar 

  50. D.D. Macdonald, Arab. J. Sci. Eng., 2012, vol. 37, pp. 1143-1185.

    Article  Google Scholar 

  51. D.D. Macdonald, J. Nucl. Mater., 2008, vol. 379, pp. 24-32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-Alhosseini.

Additional information

Manuscript submitted November 20, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-Alhosseini, A., Keshavarz, M.K., Molaei, M. et al. Plasma Electrolytic Oxidation (PEO) Process on Commercially Pure Ti Surface: Effects of Electrolyte on the Microstructure and Corrosion Behavior of Coatings. Metall Mater Trans A 49, 4966–4979 (2018). https://doi.org/10.1007/s11661-018-4824-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4824-8

Navigation