Skip to main content
Log in

Constitutive Modeling and Activation Energy Maps for a Continuously Cast Hyperperitectic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An appropriate experimental scheme and an accurate constitutive model are the two key factors that determine the success or failure of the constitutive equations used to simulate hot deformation behavior during the continuous casting process. In this study, according to the characteristics of the thin-slab continuous casting process, the experimental scheme on hot tensile tests is designed and validated by the analysis of fracture surfaces. Isothermal hot tensile tests were performed on a Gleeble 1500 thermomechanical simulator at four different temperatures (1173 K, 1273 K, 1373 K, and 1473 K) and four different strain rates (10−3, 10−2, 10−1, and 1 s−1). Based on the flow stress obtained from the tensile tests, the Arrhenius-type constitutive equation was established. It is shown that the simulation results are in good agreement with the experimental data. To further understand the constitutive behavior, activation energy maps were also developed in this study. Through a brief analysis of the activation energy map, directions for future work were surmised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. C. M. Cornelissen, J. A. Kromhout, A. A. Kamperman, M. Kick and F. Mensonides, Ironmaking & Steelmaking 2006, vol. 33, pp. 362-366.

    Article  Google Scholar 

  2. Kazuo Okamura and Hisakazu Kawashima, ISIJ International 1989, vol. 29, pp. 666-672.

    Article  Google Scholar 

  3. J. Sengupta, C. Ojeda and B. G. Thomas, International Journal of Cast Metals Research 2009, vol. 22, pp. 8-14.

    Article  Google Scholar 

  4. D. Samantaray, S. Mandal and A. K. Bhaduri, Materials & Design 2010, vol. 31, pp. 981-984.

    Article  Google Scholar 

  5. Patrick F. Kozlowski, Brian G. Thomas, Jean A. Azzi and Hao Wang, Metallurgical Transactions A 1992, vol. 23, p. 903.

    Article  Google Scholar 

  6. M. Bellet and B.G. Thomas: in Materials Processing Handbook, J.F. Shackelford and J.R. Groza, CRC Press/Taylor and Francis, ISBN 9780849332166, 2007.

  7. Fei Yin, Lin Hua, Huajie Mao and Xinghui Han, Materials & Design 2013, vol. 43, pp. 393-401.

    Article  Google Scholar 

  8. Y. C. Lin, M.-S. Chen and J. Zhong, Computational Materials Science 2008, vol. 42, pp. 470-477.

    Article  Google Scholar 

  9. Yan-Hong Xiao and Cheng Guo, Materials Science and Engineering: A 2011, vol. 528, pp. 5081-5087.

    Article  Google Scholar 

  10. S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal and K. V. Kasiviswanathan, Materials Science and Engineering: A 2009, vol. 500, pp. 114-121.

    Article  Google Scholar 

  11. Hong-Ying Li, Yang-Hua Li, Dong-Dong Wei, Jiao-Jiao Liu and Xiao-Feng Wang, Materials Science and Engineering: A 2011, vol. 530, pp. 367-372.

    Article  Google Scholar 

  12. K. P. Rao, Y. K. D. V. Prasad and E. B. Hawbolt, Journal of Materials Processing Technology 1996, vol. 56, pp. 897-907.

    Article  Google Scholar 

  13. S. T. Wu, W. Feng and X. Hu, Ironmaking & Steelmaking 2015, vol. 42, pp. 481-488.

    Article  Google Scholar 

  14. An He, Lin Chen, Sheng Hu, Can Wang and Lexiao Huangfu, Materials & Design 2013, vol. 46, pp. 54-60.

    Article  Google Scholar 

  15. J. M. Cabrera, A. Al Omar, J. M. Prado and J. J. Jonas, Metallurgical and Materials Transactions A 1997, vol. 28, pp. 2233-2244.

    Article  Google Scholar 

  16. Hamed Mirzadeh, Abbas Najafizadeh and Mohammad Moazeny, Metallurgical and Materials Transactions A 2009, vol. 40, pp. 2950-2958.

    Article  Google Scholar 

  17. Dipti Samantaray, Sumantra Mandal and A. K. Bhaduri, Computational Materials Science 2009, vol. 47, pp. 568-576.

    Article  Google Scholar 

  18. Y. C. Lin and Xiao-Min Chen, Materials & Design 2011, vol. 32, pp. 1733-1759.

    Article  Google Scholar 

  19. Varvara Kouznetsova, Marc GD Geers and WA Marcel Brekelmans, International Journal for Numerical Methods in Engineering 2002, vol. 54, pp. 1235-1260.

    Article  Google Scholar 

  20. Su Hao, Wing Kam Liu, Brian Moran, Franck Vernerey and Gregory B. Olson, Computer Methods in Applied Mechanics and Engineering 2004, vol. 193, pp. 1865-1908.

    Article  Google Scholar 

  21. S Pommier, P Lopez-Crespo and PY Decreuse, Fatigue & Fracture of Engineering Materials & Structures 2009, vol. 32, pp. 899-915.

    Article  Google Scholar 

  22. E.A. de Souza Neto and R.A. Feijóo: LNCC Research & Development Report, pp. 1–53.

  23. Hong-Ying Li, Dong-Dong Wei, Ji-Dong Hu, Yang-Hua Li and Shao-Lin Chen, Computational Materials Science 2012, vol. 53, pp. 425-430.

    Article  Google Scholar 

  24. Xiaoming He, Zhongqi Yu, Guiming Liu, Wenge Wang and Xinmin Lai, Materials & Design 2009, vol. 30, pp. 166-169.

    Article  Google Scholar 

  25. L. X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk and J. Zhou, Journal of Alloys and Compounds 2015, vol. 622, pp. 121-129.

    Article  Google Scholar 

  26. Guobing Wei, Xiaodong Peng, Amir Hadadzadeh, Yahya Mahmoodkhani, Weidong Xie, Yan Yang and Mary A. Wells, Mechanics of Materials 2015, vol. 89, pp. 241-253.

    Article  Google Scholar 

  27. Yan-Hong Xiao, Cheng Guo and Xiao-Yan Guo, Materials Science and Engineering: A 2011, vol. 528, pp. 6510-6518.

    Article  Google Scholar 

  28. A. A. Khamei and K. Dehghani, Journal of Alloys and Compounds 2010, vol. 490, pp. 377-381.

    Article  Google Scholar 

  29. V. Ludlow, A. Normanton, A. Anderson, M. Thiele, J. Ciriza, J. Laraudogoitia and W. van der Knoop, Ironmaking & Steelmaking 2005, vol. 32, pp. 68-74.

    Article  Google Scholar 

  30. Young Mok Won, Tae-Jung Yeo, Dong Jin Seol and Kyu Hwan Oh, Metallurgical and Materials Transactions B 2000, vol. 31, pp. 779-794.

    Article  Google Scholar 

  31. Yasuhiro Maehara, Ken Nakai, Kunio Yasumoto and Tateshi Mishima, Transactions of the Iron and Steel Institute of Japan 1988, vol. 28, pp. 1021-1027.

    Article  Google Scholar 

  32. J.F. Thomas Jr.: in AGARD Process Modeling Appl. to Metal Forming and Thermomechanical Processes (SEE N85-15086 06-31), 1984, pp. 1–18.

  33. Marcin Hojny and Mirosław Głowacki, Procedia Engineering 2011, vol. 10, pp. 2353-2362.

    Article  Google Scholar 

  34. Thierry Revaux, Pascal Deprez, Jean-Paul Bricout, J. Oudin, eacute, ocirc and me, ISIJ International 1994, vol. 34, pp. 528-535.

    Article  Google Scholar 

  35. Dong Jin Seol, Young Mok Won, Kyu Hwan Oh, Yong Chang Shin and Chang Hee Yim, ISIJ International 2000, vol. 40, pp. 356-363.

    Article  Google Scholar 

  36. Riqiang Liang and Akhtar S Khan, International Journal of Plasticity 1999, vol. 15, pp. 963-980.

    Article  Google Scholar 

  37. J. J. Jonas, C. M. Sellars and W. J. McG Tegart, Metallurgical Reviews 1969, vol. 14, pp. 1-24.

    Google Scholar 

  38. C Michael Sellars and WJ McTegart, Acta Metallurgica 1966, vol. 14, pp. 1136-1138.

    Article  Google Scholar 

  39. Hamed Mirzadeh, Mechanics of Materials 2015, vol. 85, pp. 66-79.

    Article  Google Scholar 

  40. Y. C. Lin and Ge Liu, Computational Materials Science 2010, vol. 48, pp. 54-58.

    Article  Google Scholar 

  41. HJ McQueen and ND Ryan, Materials Science and Engineering: A 2002, vol. 322, pp. 43-63.

    Article  Google Scholar 

  42. Cangji Shi, Weimin Mao and X. Grant Chen, Materials Science and Engineering: A 2013, vol. 571, pp. 83-91.

    Article  Google Scholar 

  43. S. Ramanathan, R. Karthikeyan and G. Ganasen, Materials Science and Engineering: A 2006, vol. 441, pp. 321-325.

    Article  Google Scholar 

  44. Y. V. R. K. Prasad and T. Seshacharyulu, International Materials Reviews 1998, vol. 43, pp. 243-258.

    Article  Google Scholar 

  45. P. Manohar and M. Ferry: in The Deformation and Processing of Structural Materials, Woodhead Publishing, Cambridge, 2005, pp. 76–125.

Download references

Acknowledgments

This work was supported by an international cooperative project between the University of Science and Technology Beijing (USTB) and Research & Development (R&D) of Tata Steel. The authors appreciate the support from R&D, Tata Steel for providing the samples, and the Chinese government “111” project (B07003) for the mutual international communication. Ms. Yan Zhang is deeply appreciated in acknowledgment of her valuable assistance in the hot tensile tests performed on the Gleeble thermomechanical simulation unit.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. X. Li or L. Z. Zhuang.

Additional information

Manuscript submitted January 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Li, H.X., Han, L. et al. Constitutive Modeling and Activation Energy Maps for a Continuously Cast Hyperperitectic Steel. Metall Mater Trans A 49, 4633–4648 (2018). https://doi.org/10.1007/s11661-018-4801-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4801-2

Navigation