Skip to main content
Log in

Additive Manufacturing of Powdery Ni-Based Superalloys Mar-M-247 and CM 247 LC in Hybrid Laser Metal Deposition

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present paper addresses the phenomena of hot cracking of nickel-based superalloys in the perspective of hybrid Laser Metal Deposition (combined application of induction and laser). This includes an extract of relevant theoretical considerations and the deduction of the tailored approach which interlinks material–scientific aspects with state-of-the-art manufacturing engineering. The experimental part reflects the entire process chain covering the manufacturing strategy, important process parameters, the profound analysis of the used materials, the gradual process development, and the corresponding hybrid manufacture of parts. Furthermore, hot isostatic pressing and thermal treatment are addressed as well as tensile testing at elevated temperatures. Further investigations include X-ray CT measurements, electron backscattered diffraction (EBSD), and scanning electron microscopy (SEM) as well as light optical microscope evaluation. The fundamental results prove the reliable processibility of the high-performance alloys Mar-M-247 and Alloy 247 LC and describe in detail the process inherent microstructure. This includes the grain size and orientation as well as the investigation of size, shape, and distribution of the γ′ precipitates and carbides. Based on these findings, the manufacturing of more complex demonstrator parts with representative dimensions is addressed as well. This includes the selection of a typical application, the transfer of the strategy, as well as the proof of concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. R. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  2. M.M. Coporation: Nickel Base Alloy. USA Patent 3720509, 14 Dezember 1970.

  3. Al. Gunderson, S.J. Setlak, and W.F. Brown: Aerospace Structural Metals Handbook, vol. 6, CINDAS LLC, West Lafayette, Indiana, 2007 (Revised).

  4. C. Yan, L. Zhengdong, A. Godfrey, L. Wei and W. Yuging: Materials Science and Engineering A, 2014, vol. 30, issue 2, pp. 153–164.

    Article  Google Scholar 

  5. C.H. Tsai, and W. Weite: Metallurgical and Materials Transactions A, vol. 30, issue 2, 1999, pp. 417–26.

    Google Scholar 

  6. A. Hübner: Untersuchungen über den Einfluss und die Wirkungen von Stickstoffzusätzen im Schutzgas auf das Heißrissverhalten ausgewählter heißrissempfindlicher Nickel-Basiswerkstoffe, Magdeburg, Otto-von-Guericke-Universität Magdeburg (Diss.), 2005.

  7. U. Dilthey: Schweißtechnische Fertigungsverfahren 2 - Verhalten der Werkstoffe beim Schweißen, vol 3, Aachen, Springer Verlag, 2005.

    Google Scholar 

  8. W. Liu, X. Tian, and X. Zhang: Weld. J. (Weld. Res. Suppl.), 1996, pp. 297–304.

  9. X. Cao, B. Rivaux, M. Jahazi, J. Cuddy and A. Birur: Journal of Materials Science, 2009, vol. 44, pp. 4557-4571.

    Article  Google Scholar 

  10. E.M. Lehockey, G. Palumbo, and P. Lin: Metall. Mater. Trans. A, vol. 29A, issue 12, 1998, pp. 3069–79.

    Article  Google Scholar 

  11. G. Göbel: Erweiterung der Prozessgrenzen beim Laserstrahlschweißen heißrissgefährdeter Werkstoffe. Dresden & Stuttgart, Technische Universität Dresden (Diss.), 2008.

  12. F. Brückner: Modellrechnungen zum Einfluss der Prozessführung beim induktiv unterstützten Laser-Pulver-Auftragschweißen auf die Entstehung von thermischen Spannungen, Rissen und Verzug. Dresden, Technische Universität Dresden (Diss.), 2011.

  13. A. Seidel: Heißrissreduzierung durch magnetofluiddynamische Maßnahmen beim Laserauftragschweißen am Beispiel der Nickelbasis-Superlegierung Mar-M-247. Thesis, Dresden, Technische Universität Dresden, 2014 (pursuing http://gepris.dfg.de/gepris/projekt/396298896).

  14. K. Gupta, N.K. Jain, and R.F. Laubscher: Hybrid Machining Processes: Perspectives on Machining and Finishing, Springer International Publishing AG, 2016.

  15. W. Grzesik: Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications, vol 2, Elsevier, San Diego, 2016.

    Google Scholar 

  16. E. Beyer: Schweißen mit Laser - Grundlagen. Springer, Berlin, 1995.

    Book  Google Scholar 

  17. D. Lepski, and F. Brückner: Laser Cladding. The Theory of Laser Materials Processing—Heat an Mass Transfer in Modern Technology, Springer, Dresden, 2009, pp. 235–79.

    Book  Google Scholar 

  18. C. S. Wu: Welding Thermal Processes and Weld Pool Behaviors, London, CRC Press, 2010.

    Google Scholar 

  19. D. M. Stefanescu: Science and Engineering of Casting Soldification, Second Edition, Columbus Ohio USA, Springer Science+Business Media, LLC, 2009.

    Google Scholar 

  20. S. Kou: Welding Metallurgy, Wisconsin, Wiley Interscience, 2003.

    Google Scholar 

  21. W. Kurz, and D. Fisher: Fundamentals of Soldification, Fourth Revised Edition, Lausanne, Trans Tech Publications Ltd, 2005 (Reprinted).

  22. R. Bürgel, Hans J. Maier and T. Niendorf: Handbuch Hochtemperatur-Werkstoffe Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und –beschichtungen, vol 4, Wiesbaden, Vieweg+Teubner Verlag, 2011.

    Book  Google Scholar 

  23. T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram, and J.S. Tu: Superalloys 1992, Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa., The Minerals, Metals & Materials Society, Warrendale/Pa., 1992, pp. 125–34.

  24. M. A. Taha and W. Kurz: About Microsegregation of Nickel Base Superalloys, Zeitschrift für Metallkunde 72, 1981, pp. 546–549.

    Google Scholar 

  25. D. Ma and P. R. Sahm: Einkristallerstarrung der Ni-Basis-Superlegierung SRR99, Teil2: Mikroseigerungsverhalten der Legierungselemente, Zeitschrift für Metallkunde 87, 1996, pp. 634– 639.

    Google Scholar 

  26. M.S.A. Karunaratne, D.C. Cox, P. Porter, and R.C. Reed, Superalloys 2000, Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa., The Minerals, Metals & Materials Society, Warrendale/Pa., 2000, pp. 263–72.

  27. A. R. E Singer and P. H. Jennings: J. Inst. Met.,1947, vol 74, pp. 197-212.

    Google Scholar 

  28. H. F. Bishop, C. E. Ackerland and S. W. Pellini: Trans. Am. Foundry Soc., 1952, vol. 60, pp. 818-913.

    Google Scholar 

  29. W. S. Pellini: Foundry, 1952, vol. 80, pp. 125-199.

    Google Scholar 

  30. C. Borland: Br. W. J.,1960, vol. 7, pp. 508-512.

    Google Scholar 

  31. M. Rappaz, J. M. Drezet and M. Gremaud: Metall. Mater. Trans. A, vol. 30A, 1999, pp. 449–55.

    Article  Google Scholar 

  32. S. Bonss, M. Seifert, J. Hannweber, U. Karsunke, S. Kühn, D. Pögen, and E. Beyer: Invited Paper at the 9th International Conference on Photonic Technologies LANE 2016, Physics Procedia, vol. 83, pp. 1–1450.

  33. Ken-Tu Hsu, Huei-Sen Wang, Wei Bin He, Chen-Ming Kuo, Hui-Yun Bor and Chao-Nan Wei: Supplemental Proceedings: Materials Properties, Characterization, and Modeling, vol. 2, 2012, pp. 667-672.

    Google Scholar 

  34. DIN EN ISO 6892-2:2011-05, Metallic materials—Tensile testing—Part 2: method of test at elevated temperature (ISO 6892-2:2011).

  35. M. V. Nathal and R. A. Mackay: Acta Metallurgica et Materialia, vol. 39, 1991, pp. 2771-2781.

    Article  Google Scholar 

  36. R. Baldan, C. A. Nunes, M. J. R. Barboza, A. M . S. Costa, R. Bogado and G. C. Coelho.: Int. Conf. Adv. Mater., vol 11, 2009, pp. 56-67.

    Google Scholar 

  37. J. Davids.: Heat-Resistant Materials, The Materials Information Society, Materials Park, Ohio, 1997.

    Google Scholar 

  38. A. Basak and S. Das: Journal of Alloys and Compounds, vol. 705, 2017, pp. 806-816.

    Article  Google Scholar 

  39. X. Wang,N. Luke. B. Pang Carter, Moataz M. Attallah and Michael H. Loretto, Acta Materialia, vol. 128, 2017, pp 87-95.

    Article  Google Scholar 

  40. J.R. Kattschuk: MAR-M247, Aerospace Structural Metals Handbook, 1999, pp. 1–7.

  41. P. Heuler and H. Huff: Niedrigschwingspielzahl-Ermüdung (LCF) von Turbinenrädern aus Nickelbasis-Gußwerkstoffen Teil II: Untersuchungen an dem Werkstoff MAR-M247 LC FK HIP, Final report for the FVV-project Nr. 438, Industrieanlagen-Betriebsgesellschaft mbH (IABG), Fraunhofer-Institut für Betriebsfestigkeit (LBF), Darmstadt, 1994.

  42. D. Gelmedin and K.H. Lang: Ermüdungsverhalten von Hochtemperaturwerkstoffen bei hohen Grundlasten, Final report for the FVV-project Nr. 867, Institut für Werkstoffkunde I, Universität Karlsruhe, 2010.

  43. M. Prager and C. S. Shira: Welding of Precipitation Hardening Nickel-Base Alloys, Weld Research Council Bulletin, vol. 6, 1968, pp. 128-155.

    Google Scholar 

  44. J.M. Kalinowski: Weldability of a Nickel-Based Superalloy, NASA Contractor Report 195376, August 1994.

  45. G. Cam and M. Kocak, International Materials Reviews, vol. 43, 2013, pp. 1-44.

    Article  Google Scholar 

  46. A. Basak and S. Das: JOM, vol. 70, 2018, pp. 53-59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Seidel.

Additional information

Manuscript submitted March 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, A., Finaske, T., Straubel, A. et al. Additive Manufacturing of Powdery Ni-Based Superalloys Mar-M-247 and CM 247 LC in Hybrid Laser Metal Deposition. Metall Mater Trans A 49, 3812–3830 (2018). https://doi.org/10.1007/s11661-018-4777-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4777-y

Navigation