Skip to main content
Log in

Improving the weldability and service performance of nickel-and iron-based superalloys by grain boundary engineering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The principal limitation of today’s Ni- and Fe-based superalloys continues to be their susceptibility to intergranular degradation arising from creep, hot corrosion, and fatigue. Many precipitation-strengthened superalloys are also difficult to weld, owing to the formation of heat-affected zone (HAZ) cracks during postweld heat treatments (PWHTs). The present work highlights significant improvements in high-temperature intergranular degradation susceptibility and weldability arising from increasing the relative proportion of crystallographically “special” low-Σ CSL grain boundaries in the microstructure. Susceptibility to intergranular degradation phenomena is reduced by between 30 and 90 pct and is accompanied by decreases in the extent and length of PWHT cracking of up to 50-fold, with virtually no compromise in mechanical (tensile) properties upon which the functionality of these specialty materials depends. Collectively, the data presented suggest that “engineering” the crystallographic structure of grain boundaries offers the possibility to extend superalloy lifetimes and reliability, while minimizing the need for specialized welding techniques which can negatively impact manufacturing costs and throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Fawley: in Superalloys, Pergamon Press, New York, NY, 1983, pp. 3–29.

    Google Scholar 

  2. N.S. Stolof: ASTM Metals Handbook, ASM INTERNATIONAL, Metals Park, OH, 1990, vol. 1, pp. 950–94.

    Google Scholar 

  3. G.W. Meetham: Mater. and Des., 1988, vol. 9, pp. 213–19.

    Google Scholar 

  4. Metals Handbook (Desk Edition), ASM, Metals Park, OH, 1985, pp. 16-5–16-17.

  5. A. Shaffiq: JOM, 1990, pp. 24–26.

  6. W. Betterridge: Mater. Sci. Technol., 1992, vol. 7, pp. 643–92.

    Google Scholar 

  7. G. Palumbo and K.T. Aust: Acta Metall., 1990, vol. 38, pp. 2343–52.

    Article  CAS  Google Scholar 

  8. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scripta Metall., 1995, vol. 33, pp. 1387–92.

    Article  CAS  Google Scholar 

  9. C. Cheung, G. Palumbo, and U. Erb: Mater. Sci. Eng. A, 1994, vol. 185, pp. 39–43.

    Article  Google Scholar 

  10. T. Watanabe: Res. Mechanica, 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  11. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag. A, 1981, vol. 44, pp. 1239–54.

    CAS  Google Scholar 

  12. G. Palumbo and K.T. Aust: in Materials Interfaces, D. Wolf and S. Yip, eds., Chapman and Hall, London, 1992, pp. 190–211.

    Google Scholar 

  13. E.M. Lehockey and G. Palumbo: Mater. Sci. Eng. A, 1997, vol. A237, pp. 168–72.

    CAS  Google Scholar 

  14. E.M. Lehockey, G. Palumbo, K.T. Aust, U. Erb, and P. Lin: Scripta Metall. et Materialia, 1998, vol. 39, pp. 341–6.

    Article  CAS  Google Scholar 

  15. E.M. Lehockey, G. Palumbo, and P. Lin, and D. Limoges: “Metallurgical Method for Processing Nickel- and Iron-Based Superalloys,” U.S. Provisional Patent, Reg. No. 31,228, filed Aug. 4, 1997.

  16. E.M. Lehockey, G. Palumbo, A.M. Brennenstuhl, and P. Lin: Mater. Res. Soc. Symp. Proc., 1997, vol. 458, pp. 243–48.

    CAS  Google Scholar 

  17. G. Palumbo, E.M. Lehockey, and P. Lin: Journal of Metals (JOM), 1998, vol. 50, pp. 40–43.

    CAS  Google Scholar 

  18. E.M. Lehockey, A.M. Brennenstuhl, G. Palumbo, and P. Lin: J. Br. Corrosion, 1997, vol. 32, pp. 1–8.

    Google Scholar 

  19. E.F. Bradley: Superalloys: A Technical Guide, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 163–85.

    Google Scholar 

  20. J.A. Venables and C.J. Harland: Phil. Mag., 1973, vol. 27, pp. 1193–1201.

    CAS  Google Scholar 

  21. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  22. B. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. A24, pp. 819–31.

    Google Scholar 

  23. ASTM STP G28-85, Annual Book of Standards, ASTM, Philadelphia, PA, 1985, pp. 91–93.

  24. V.P. Swaminathan and P. Lowden: “Gas Turbine Life Assessment and Repair Guide,” EPRI Report GS-6544, Electric Power Research Institute: San Diego, CA, 1989.

    Google Scholar 

  25. Y. Zhang and W. Wu: J. Phys., 1993, suppl. vol. 3, pp. 319–26.

    CAS  Google Scholar 

  26. ASTM STP E8, Annual Book of Standards, ASTM, Philadelphia, PA, 1996, vol. 3.10, pp. 55–75.

  27. ASTM STP E139 Annual Book of Standards, ASTM, Philadelphia, PA, 1996, vol. 3.01, pp. 252–62.

  28. M.F. Ashby: Acta Metall., 1972, vol. 20, pp. 887–97.

    Article  CAS  Google Scholar 

  29. ASTM STP E466, Annual Book of Standards, ASTM, Philadelphia, PA, 1996, vol. 3.01, pp. 465–69.

  30. ASTM STP E1150 Annual Book of Standards, ASTM, Philadelphia, PA, 1996, vol. 3.01, pp. 740–49.

  31. G. Palumbo, K.T. Aust, U. Erb, P.J. King, A.M. Brennenstuhl, and P.C. Lichtenberger: Phys. Status Solidi A, 1992, vol. 131, pp. 425–8.

    Article  Google Scholar 

  32. R.L. Fullman and J.C. Fisher: J. Appl. Phys., 1951, vol. 22, pp. 1350–55.

    Article  CAS  Google Scholar 

  33. E.M. Lehockey, G. Palumbo, P. Lin, and A.M. Brennenstuhl: Metall. Trans. A, 1998, vol. A29, pp. 1–10.

    Google Scholar 

  34. P. Lin, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1997, vol. 36, pp. 1145–49.

    CAS  Google Scholar 

  35. K.T. Aust: Progr. Mater. Sci., 1980, vol. 10, pp. 27–48.

    Google Scholar 

  36. V. Thaveeprunasriporn and G. Was: Proc. TMS Wertmann Symp., R. Arsonol, D. Cole, T. Gross, G. Kostorz, P. Liaw, and S. Parameswaren, eds., TMS, Warrendale, PA, 1996, pp. 179–88.

    Google Scholar 

  37. A.J. Perry: J. Mater. Sci., 1974, vol. 9, pp. 1016–39.

    Article  CAS  Google Scholar 

  38. R.C. Pond, D.A. Smith, and P.W.J. Southernden: Phil. Mag. A, 1978, vol. 37, pp. 27–40.

    CAS  Google Scholar 

  39. T. Watanabe and P. Davies: Phil. Mag. A, 1978, vol. 37, pp. 649–81.

    CAS  Google Scholar 

  40. J. Bressers: in High Temperature Alloys—Their Exploitable Potential, Elsevier Publishing, London, 1987, pp. 385–410.

    Google Scholar 

  41. J. Wareing: in Fatigue at High Temperature, R.P. Skelton, ed., Applied Science Publishers, London, pp. 135–85.

  42. M. Gell, G.R. Leverant, and C.H. Wells: ASTM STP 467, ASTM, Philadelphia, PA, 1970, pp. 113–53.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehockey, E.M., Palumbo, G. & Lin, P. Improving the weldability and service performance of nickel-and iron-based superalloys by grain boundary engineering. Metall Mater Trans A 29, 3069–3079 (1998). https://doi.org/10.1007/s11661-998-0214-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0214-y

Keywords

Navigation