Skip to main content
Log in

Comparison of Thermodynamic Predictions and Experimental Observations on B Additions in Powder-Processed Ni-Based Superalloys Containing Elevated Concentrations of Nb

  • Topical Collection: Next Generation Superalloys and Beyond
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Boron additions to Ni-based superalloys are considered to be beneficial to the creep properties of the alloy, as boron has often been reported to increase grain boundary cohesion, increase ductility, and promote the formation of stable boride phases. Despite the importance, it is not well understood whether these improvements are associated with the presence of elemental boron or stable borides along the grain boundaries. In this investigation, two experimental powder-processed Ni-based superalloys containing elevated levels of Nb were found to exhibit increased solubility for B in the γ matrix when compared to similar commercial Ni-based superalloys. This resulted in an overall lower B concentration at grain boundaries that suppressed boride formation. As the predictive capability of CALPHAD database models for Ni-based superalloys have improved over the years, some discrepancies may still persist around compositionally heterogeneous features such as grain boundaries. Improved quantification of the characteristic partitioning of B as a function of the bulk alloy composition is required for understanding and predicting the stability of borides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  Google Scholar 

  2. D. Furrer and H. Fecht: JOM, 1999, vol. 51, pp. 14–7.

    Article  Google Scholar 

  3. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Wiley, Hoboken, 1987.

    Google Scholar 

  4. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, J. Li, S. Ghosh, and M.J. Mills: Superalloys 2008 (Eleventh International Symposium), TMS, 2008, pp. 377–85.

  5. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clement: Superalloys 2004 (Tenth International Symposium), TMS, 2004, pp. 179–87.

  6. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge 2006.

    Book  Google Scholar 

  7. M.J. Donachie and S.J. Donachie: Superalloys: A Technical Guide, 2nd edn., Asm International, Materials Park, OH, 2002.

    Google Scholar 

  8. R.F. Decker and C.T. Sims: The Metallurgy of Nickel-Base Superalloys, Paul D. Merica Research Laboratory, 1972.

    Google Scholar 

  9. R.R. Unocic, G.B. Viswanathan, P.M. Sarosi, S. Karthikeyan, J. Li, and M.J. Mills: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 25–32.

    Article  Google Scholar 

  10. T.M. Pollock and R.D. Field: Dislocations in Solids, Elsevier, Amsterdam, 2002, pp. 547–618.

    Google Scholar 

  11. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588–603.

    Article  Google Scholar 

  12. Y. Mishima, S. Ochiai, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 41–50.

    Article  Google Scholar 

  13. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Japan Inst. Met., 1986, vol. 27, pp. 648–55.

    Article  Google Scholar 

  14. S. Antonov, M. Detrois, D. Isheim, D. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.

    Article  Google Scholar 

  15. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Mater. Sci. Eng. A, 2017, vol. 687, pp. 232–40.

    Article  Google Scholar 

  16. S. Antonov, M. Detrois, R.C. Helmink, and S. Tin: J. Alloys Compd., 2015, vol. 626, pp. 76–86.

    Article  Google Scholar 

  17. M. Detrois, R.L. Goetz, R.C. Helmink, and S. Tin: Mater. Sci. Eng. A, 2015, vol. 647, pp. 157–62.

    Article  Google Scholar 

  18. T.J. Garosshen, T.D. Tillman, and G.P. McCarthy: Metall. Trans. A, 1987, vol. 18, pp. 69–77.

    Article  Google Scholar 

  19. B.C. Yan, J. Zhang, and L.H. Lou: Mater. Sci. Eng. A, 2008, vol. 474, pp. 39–47.

    Article  Google Scholar 

  20. P.J. Zhou, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu: Mater. Sci. Eng. A, 2008, vol. 491, pp. 159–63.

    Article  Google Scholar 

  21. C.G. Bieber and R.F. Decker: Trans. Metall. Soc. Aime, 1961, vol. 221, pp. 629–36.

    Google Scholar 

  22. P. Kontis, H.A.A. Mohd Yusof, K.L.L. Moore, C.R.M.R.M. Grovenor, and R.C.C. Reed: MATEC Web Conference, 2014, vol. 14, p. 17003.

  23. P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed: Acta Mater., 2016, vol. 103, pp. 688–99.

    Article  Google Scholar 

  24. P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed: Acta Mater., 2017, vol. 124, pp. 489–500.

    Article  Google Scholar 

  25. D. Tytko, P.-P. Choi, J. Klöwer, A. Kostka, G. Inden, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 1731–40.

    Article  Google Scholar 

  26. H. Kitaguchi: Metallurgy - Advances in Materials and Processes, 2012, pp. 20–41.

  27. X.B. Hu, L.Z. Zhou, J.S. Hou, X.Z. Qin, and X.L. Ma: Philos. Mag. Lett., 2016, vol. 96, pp. 273–9.

    Article  Google Scholar 

  28. S. Antonov, J. Huo, Q. Feng, D. Isheim, D.N. Seidman, R.C. Helmink, E. Sun, and S. Tin: Scr. Mater., 2017, vol. 138, pp. 35–8.

    Article  Google Scholar 

  29. T.P. Gabb, R.A. MacKay, S.L. Draper, C.K. Sudbrack, and M. V. Nathal: The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk, Cleveland, Ohio, 2013.

    Google Scholar 

  30. C.K. Sudbrack, L.J. Evans, A. Garg, D.E. Perea, and D.K. Schreiber: Superalloys 2016 (Thirteenth International Symposyum), Wiley, Hoboken, 2016, pp. 927–36, DOI:10.1002/9781119075646.ch99.

  31. W. Chen, M.C.C.C. Chaturvedi, N.L.L.L. Richards, and G. McMahon: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1947–54.

    Article  Google Scholar 

  32. M.A. Balachander, K. Vishwakarma, and N.L. Richards: Mater. Sci. Technol., 2012, vol. 28, pp. 380–4.

    Article  Google Scholar 

  33. J.A.A. Domingue, W.J.J. Boesch, and J.F.F. Radavich: Superalloys 1980 (Fourth International Symposium), 1980, pp. 335–44, DOI:10.7449/1980/Superalloys_1980_335_344.

  34. M.A. Balachander, K. Vishwakarma, B. Tang, and N.L. Richards: Mater. Sci. Technol., 2011, vol. 27, pp. 805–10.

    Article  Google Scholar 

  35. J.M. Walsh and B.H. Rear: Metall. Trans. A, 1975, vol. 6, pp. 950.

    Article  Google Scholar 

  36. P.A.J. Bagot, O.B.W. Silk, J.O. Douglas, S. Pedrazzini, D.J. Crudden, T.L. Martin, M.C. Hardy, M.P. Moody, and R.C. Reed: Acta Mater., 2017, vol. 125, pp. 156–65.

    Article  Google Scholar 

  37. B.H. Toby and R.B. Von Dreele: J. Appl. Crystallogr., 2013, vol. 46, pp. 544–9.

    Article  Google Scholar 

  38. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–6.

    Article  Google Scholar 

  39. D.N. Seidman and K. Stiller: MRS Bull., 2009, vol. 34, pp. 717–24.

    Article  Google Scholar 

  40. D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127–58.

    Article  Google Scholar 

  41. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  42. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    Google Scholar 

  43. G.W. Meetham: Met. Technol., 1984, vol. 11, pp. 414–8.

    Article  Google Scholar 

  44. P. Kontis, S. Pedrazzini, Y. Gong, P.A.J. Bagot, M.P. Moody, and R.C. Reed: Scr. Mater., 2017, vol. 127, pp. 156–9.

    Article  Google Scholar 

  45. O.A. Ojo and H.R. Zhang: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2008, vol. 39, pp. 2799–803.

    Article  Google Scholar 

  46. H.R. Zhang and O.A. Ojo: J. Mater. Sci., 2008, vol. 43, pp. 6024–8.

    Article  Google Scholar 

  47. T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2183–91.

    Article  Google Scholar 

  48. B. Du, L. Sheng, C. Cui, J. Yang, and X. Sun: Mater. Charact., 2017, vol. 128, pp. 109–14.

    Article  Google Scholar 

  49. R. Reed: Powder Metallurgy and Superalloys, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  50. G.H. Gessinger and M.J. Bomford: Int. Metall. Rev., 1974, vol. 19, pp. 51–76.

    Google Scholar 

  51. L. Letellier, A. Bostel, and D. Blavette: Scr. Metall. Mater., 1994, vol. 30, pp. 1503–8.

    Article  Google Scholar 

  52. T.P. Gabb, A. Garg, D.R. Miller, C.K. Sudbrack, D.R. Hull, D. Johnson, R.B. Rogers, J. Gayda, and S.L. Semiatin: Formation of Minor Phases in a Nickel-Based Disk Superalloy, Cleveland, Ohio, 2012.

    Google Scholar 

  53. E.J.J. Pickering, H. Mathur, A. Bhowmik, O.M.D Messé, J.S.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J.J. Stone, and C.M. Rae: Acta Mater., 2012, 60:2757–69.

    Article  Google Scholar 

  54. J.-C. Zhao and M.F. Henry: Adv. Eng. Mater., 2002, vol. 4, pp. 501–8.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Rolls-Royce Corporation and NSF CMMI-1537468. APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The local-electrode atom-probe tomograph at NUCAPT was acquired and upgraded with equipment grants from the MRI program of the National Science Foundation (Grant Number DMR-0420532) and the DURIP program of the Office of Naval Research (Grant Numbers N00014-0400798, N00014-0610539, N00014-0910781). This work made use of the MatCI Facility at Northwestern University. NUCAPT and MatCI received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, NUCAPT through the SHyNE Resource (NSF NNCI-1542205), and the Initiative for Sustainability and Energy at Northwestern (ISEN). This work made use of the EPIC, Keck-II, and/or SPID facility(ies) of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stoichko Antonov.

Additional information

Manuscript submitted June 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, S., Huo, J., Feng, Q. et al. Comparison of Thermodynamic Predictions and Experimental Observations on B Additions in Powder-Processed Ni-Based Superalloys Containing Elevated Concentrations of Nb. Metall Mater Trans A 49, 729–739 (2018). https://doi.org/10.1007/s11661-017-4380-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4380-7

Navigation