Skip to main content
Log in

Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

As a first attempt, a mathematical model is proposed to predict the dissolution kinetics of non-spherical secondary phase precipitates during solution heat treatment of age-hardenable aluminum alloys. The model uses general spheroidal geometry to describe the dissolution process of the alloys containing needle/disc-shaped particles with different size distributions in a finite matrix. It is found that as the aspect ratio deviates from unity, the dissolution rate is accelerated. Also, the dissolution rate of the particles in the alloy containing the particle size distribution is lower than that of mono-sized particles system. The modeling results for dissolution of θ′ precipitates in an Al-Cu alloy are compared with experiments, and a good agreement was found between the modeling and the experimental results. The proposed model can be applied to different isothermal and non-isothermal annealing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. Miller: Mat. Sci. Eng. A, 2000. Vol. 280, pp. 102-107.

    Article  Google Scholar 

  2. 2. N. Anjabin and A. K. Taheri: Mater. Des., 2010. Vol. 31, pp. 433-437.

    Article  Google Scholar 

  3. ASM Handbook. Forming and Forging, vol. 14. ASM International, 1988.

  4. 4. G. Thomas and M. Whelan: Philosophical Magazine, 1961. Vol. 6, pp. 1103-1114.

    Article  Google Scholar 

  5. 5. M. Whelan: Met. Sci. J., 1969. Vol. 3, pp. 95-97.

    Article  Google Scholar 

  6. 6. R. Tanzilli and R. Heckel: Trans. Metall. Soc. AIME, 1968. Vol. 242, pp. 2313-2321.

    Google Scholar 

  7. 7. U. H. Tundal and N. Ryum: Metall. Mater. Trans. A, 1992. Vol. 23, pp. 433-444.

    Article  Google Scholar 

  8. 8. F. Vermolen, K. Vuik, and S. van der Zwaag: Mat. Sci. Eng. A, 1998. Vol. 246, pp. 93-103.

    Article  Google Scholar 

  9. 9. I. Kovačević and B. Šarler: Mat. Sci. Eng. A, 2005. Vol. 413, pp. 423-428.

    Google Scholar 

  10. 10. H. Wang and W. Wang: Mater. Sci. Technol., 2007. Vol. 23, pp. 833-838.

    Article  Google Scholar 

  11. 11. Q. Zuo, F. Liu, L. Wang, C. F. Chen, and Z. H. Zhang: J. Mater. Sci., 2014. Vol. 49, pp. 3066-3079.

    Article  Google Scholar 

  12. 12. O. Myhr and Ø. Grong: Acta Mater., 2000. Vol. 48, pp. 1605-1615.

    Article  Google Scholar 

  13. 13. O. Myhr, Ø. Grong, and S. Andersen: Acta Mater., 2001. Vol. 49, pp. 65-75.

    Article  Google Scholar 

  14. 14. J. Robson: Acta Mater., 2004. Vol. 52, pp. 1409-1421.

    Article  Google Scholar 

  15. 15. S. Samaras: Modell. Simul. Mater. Sci. Eng., 2006. Vol. 14, pp. 1271.

    Article  Google Scholar 

  16. 16. A. Simar, Y. Bréchet, B. De Meester, A. Denquin, C. Gallais, and T. Pardoen: Prog. Mater. Sci., 2012. Vol. 57, pp. 95-183.

    Article  Google Scholar 

  17. 17. B. Holmedal, E. Osmundsen, and Q. Du: Metall. Mater. Trans. A, 2016. Vol. 47, pp. 581-588.

    Article  Google Scholar 

  18. 18. Q. Du, B. Holmedal, J. Friis, and C. D. Marioara: Metall. Mater. Trans. A, 2016. Vol. 47, pp. 589-599.

    Article  Google Scholar 

  19. 19. F. S. Ham: J. Appl. Phys., 1959. Vol. 30, pp. 1518-1525.

    Article  Google Scholar 

  20. 20. G. Horvay and J. Cahn: Acta Metall., 1961. Vol. 9, pp. 695-705.

    Article  Google Scholar 

  21. 21. G. Liu, G. Zhang, X. Ding, J. Sun, and K. Chen: Mat. Sci. Eng. A, 2003. Vol. 344, pp. 113-124.

    Article  Google Scholar 

  22. 22. P. Hewitt and E. Butler: Acta Metallurgica, 1986. Vol. 34, pp. 1163-1172.

    Article  Google Scholar 

  23. K. G. F. Janssens, D. Raabe, E. Kozeschnik, M. A. Miodownik, and B. Nestler, Computational materials engineering: an introduction to microstructure evolution. 2010: Academic Press.

    Google Scholar 

  24. 24. J. Bourne, C. Atkinson, and R. Reed: Metall. Mater. Trans. A, 1994. Vol. 25, pp. 2683-2694.

    Article  Google Scholar 

  25. 25. E. Menon, R. Hyland, and H. Aaronson: Scr. Metall., 1984. Vol. 18, pp. 367-370.

    Article  Google Scholar 

  26. 26. H. B. Aaron, D. Fainstein, and G. R. Kotler: J. Appl. Phys., 1970. Vol. 41, pp. 4404-4410.

    Article  Google Scholar 

  27. 27. R. Kniep: Angew. Chem., 1992. Vol. 104, pp. 245-246.

    Article  Google Scholar 

  28. 28. L. Brown: Metall. Mater. Trans. A, 1984. Vol. 15, pp. 449-458.

    Article  Google Scholar 

  29. 29. S. Hu, J. Murray, H. Weiland, Z. Liu, and L. Chen: Calphad, 2007. Vol. 31, pp. 303-312.

    Article  Google Scholar 

  30. 31. H. Aaron and G. Kotler: Met. Sci. J., 1970. Vol. 4, pp. 222-225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozar Anjabin.

Additional information

Manuscript submitted January 15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjabin, N., Salehi, M.S. Dissolution Kinetics of Spheroidal-Shaped Precipitates in Age-Hardenable Aluminum Alloys. Metall Mater Trans A 49, 3584–3591 (2018). https://doi.org/10.1007/s11661-018-4674-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4674-4

Navigation