Skip to main content
Log in

Design of Online Spheroidization Process for 1.0C-1.5Cr Bearing Steel and Microstructure Analysis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using thermo-mechanical control process, the online spheroidization annealing process of 1.0C-1.5Cr bearing steel was designed. Apart from intercritical online spheroidization (IS), a novel subcritical online spheroidization (SS) process was proposed, which is characterized by water-cooling to around 773 K (500 °C) after the final rolling pass, and then directly reheating to 973 K (700 °C) for isothermal holding. Compared with the results from the traditional offline spheroidization (TS) process, the size of spheroidized carbides is similar in both the TS and IS processes, whereas it is much smaller in the SS process. After spheroidization annealing, microstructure evolution during austenitization and quenching treatment was examined. It is shown that the refining of spheroidized carbides accelerates the dissolution of carbides during the austenitizing process, and decreases the size of undissolved carbides. In addition, the SS process can obtain finer prior austenite grain after quenching, which contributes to the enhancement of final hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268-435.

    Article  Google Scholar 

  2. E.V. Zaretsky: Mater. Sci. Technol., 2012, vol. 28, pp. 58-69.

    Article  Google Scholar 

  3. T. Oyama and O.D. Sherby, J. Wadsworth, B. Walser: Scr. Metall., 1984, vol. 18, pp. 799-804.

    Article  Google Scholar 

  4. J.D. Verhoeven: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2431-38.

    Article  Google Scholar 

  5. J.J. Sun, F.L. Lian, H.J. Liu, T. Jiang, S.W. Guo, L.X. Du and Y.N. Liu: Mater. Charact., 2014, vol. 95, pp. 291-98.

    Article  Google Scholar 

  6. J.D. Verhoeven and E.D. Gibson: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1181-89.

    Article  Google Scholar 

  7. A.S. Pandit and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2012, vol. 468, pp. 2767-78.

    Article  Google Scholar 

  8. Z.X. Li, C.S. Li, J. Zhang, B. Qiao and Z.Z. Li: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3220-31.

    Article  Google Scholar 

  9. N.V. Luzginova, L. Zhao and J. Sietsma: Metall. Mater. Trans. A, 2008, vol. 39, pp. 513-21.

    Article  Google Scholar 

  10. J. Epp, H. Surm, O. Kessler and T. Hirsch: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2371-78.

    Article  Google Scholar 

  11. S.E. Nam and D.N. Lee: J. Mater. Sci., 1987, vol. 22, pp. 2319-26.

    Article  Google Scholar 

  12. S.L. Zhang, X.J. Sun and H. Dong: Mater. Sci. Eng. A, 2006, vol. 432, pp. 324-32.

    Article  Google Scholar 

  13. H. Hwang and B.C. De Cooman: Steel Res. Int., 2016, vol. 87, pp. 112-25.

    Article  Google Scholar 

  14. Z.X. Li, C.S. Li, J. Zhang, B.Z. Li and X.D. Pang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3607-21.

    Article  Google Scholar 

  15. Y.K. Sun and D. Wu: J Iron Steel Res. Int., 2009, vol. 16, pp. 61-65.

    Article  Google Scholar 

  16. Z.X. Li, C.S. Li, B.Z. Li, Y.Q. Ma and T. Li: Mater. Sci. Technol., 2015, vol. 31, pp. 722-29.

    Article  Google Scholar 

  17. M. Wang, F. Zhang and Z. Yang: Mater. Des., 2017, vol. 114, pp. 102-10.

    Article  Google Scholar 

  18. E.B. Hawbolt, B. Chau and J.K. Brimacombe: Metall. Trans. A, 1983, vol. 14, pp. 1803-15.

    Article  Google Scholar 

  19. S.W. Seo, H.K.D.H. Bhadeshia and D.W. Suh: Mater. Sci. Technol., 2015, vol. 31, pp. 487-93.

    Article  Google Scholar 

  20. Z.X. Li, C.S. Li, J.Y. Ren, B.Z. Li, J. Zhang and Y.Q. Ma: Mater. Sci. Eng. A, 2016, vol. 674, pp. 262-69.

    Article  Google Scholar 

  21. W. Solano-Alvarez and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 4916-31.

    Article  Google Scholar 

  22. A.T.W. Barrow and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2011, vol. 59, pp. 7155-67.

    Article  Google Scholar 

  23. H. Yahyaoui, H. Sidhom, C. Braham and A. Baczmanski, Mater. Des., 2014, vol.55, pp. 888-897.

    Article  Google Scholar 

  24. W. Song, P.P. Choi, G. Inden, U. Prahl, D. Raabe and W. Bleck: Metall. Mater. Trans. A, 2014, vol. 45, pp. 595-606.

    Article  Google Scholar 

  25. Y.T. Wang, Y. Adachi, K. Nakajima and Y. Sugimoto: Acta Mater., 2010, vol. 58, pp. 4849-58.

    Article  Google Scholar 

  26. A.M. Elwazri, P. Wanjara and S. Yue: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2297-305.

    Article  Google Scholar 

  27. K.M. Wu and H.K.D.H. Bhadeshia: Scr. Mater., 2012, vol. 67, pp. 53-56.

    Article  Google Scholar 

  28. F.G. Caballero, C. García de Andrés and C. Capdevila: Mater. Charact., 2000, vol. 45, pp. 111-16.

    Article  Google Scholar 

  29. A.M. Elwazri, P. Wanjara and S. Yue: Mater. Charact., 2005, vol. 54, pp. 473-78.

    Article  Google Scholar 

  30. Ö.E. Atasoy and S. Özbilen: J. Mater. Sci., 1989, vol. 24, pp. 281-87.

    Article  Google Scholar 

  31. G.H. Zhang, J.Y. Chae, K.H. Kim and D.W. Suh: Mater. Charact., 2013, vol. 81, pp. 56-67.

    Article  Google Scholar 

  32. C.A. Stickels: Metall. Trans., 1974, vol. 5, pp. 865-74.

    Article  Google Scholar 

  33. K.H. Kim, S.D. Park and J.H. Kim: Met. Mater. Int., 2012, vol. 18, pp. 917-21.

    Article  Google Scholar 

  34. A.T.W. Barrow, J.H. Kang and P.E.J. Rivera-Diaz-del-Castillo: Acta Mater., 2012, vol. 60, pp. 2805-15.

    Article  Google Scholar 

  35. J. Zhao, T. Zhao, C.S. Hou, F.C. Zhang and T.S. Wang: Mater. Des., 2015, vol. 86, pp. 215-20.

    Article  Google Scholar 

  36. K.S. Park, S.J. Cho, K.Y. Lee, G.S. Kim and C.S. Lee: Int. J. Fatigue, 2007, vol.29, pp. 1863-67.

    Article  Google Scholar 

  37. E.C. Santos, K. Kida, T. Honda, H. Koike and J. Rozwadowska: Mater. Sci. 2012, vol. 47, pp. 677-84.

    Article  Google Scholar 

  38. P.R. Howell: Mater. Charact., 40 (1998) 227-60.

    Article  Google Scholar 

  39. M. Bambacha and S. Seuren, J. Mater. Process. Tech., 2015, vol. 216, pp. 95-113.

    Article  Google Scholar 

  40. A. Fernández-Vicente, M. Carsí, F. Penãlba, E. Taleff and O.A. Ruano: Mater. Sci. Eng. A, 2002, vol. 335, pp. 175-85.

    Article  Google Scholar 

  41. Q. Lai, M. Gouné, A. Perlade, T. Pardoen, P. Jacques, O. Bouaziz and Y. Bréchet: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3375-86.

    Article  Google Scholar 

  42. J.Y. Chae, J.H. Jang, G. Zhang, K.H. Kim, J.S. Lee, H.K.D.H. Bhadeshia and D.W. Suh, Scr. Mater., 2011, vol. 65, pp. 245-48.

    Article  Google Scholar 

  43. G. Miyamoto, H. Usuki, Z.D. Li and T. Furuhara, Acta Mater., 2010, vol. 58, pp. 4492-502.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (2012AA03A503), Fundamental Research Funds for the Central Universities (N130607002), Research Fund for the Doctoral Program of Higher Education of China (20130042110040) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sheng Li.

Additional information

Manuscript submitted May 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZX., Li, CS., Ren, JY. et al. Design of Online Spheroidization Process for 1.0C-1.5Cr Bearing Steel and Microstructure Analysis. Metall Mater Trans A 49, 1782–1794 (2018). https://doi.org/10.1007/s11661-018-4511-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4511-9

Navigation