Skip to main content

Advertisement

Log in

A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl and SO42− ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (−189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (−1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current–time profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B.D. Gates, and G. Jerkiewicz: ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 12046–61.

    Article  Google Scholar 

  2. J. Lu, T. Xiong, W. Zhou, L. Yang, Z. Tang, and S. Chen: ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 5065–9.

    Article  Google Scholar 

  3. V.H. Pham and J.H. Dickerson: J. Phys. Chem. C, 2016, vol. 120, pp. 5353–60.

    Article  Google Scholar 

  4. N. Akhtar, S. El-Safty, and M. Khairy: Chemosensors, 2014, vol. 2, pp. 235–50.

    Article  Google Scholar 

  5. H. Zhang, X. Yu, and P. V Braun: Nat. Nanotechnol., 2011, vol. 6, pp. 277–81.

    Article  Google Scholar 

  6. S. Sengupta, A. Patra, M. Akhtar, K. Das, S.B. Majumder, and S. Das: J. Alloys Compd., 2017, vol. 705, pp. 290–300.

    Article  Google Scholar 

  7. W. Xu, N.L. Canfield, D. Wang, J. Xiao, Z. Nie, X.S. Li, W.D. Bennett, C.C. Bonham, and J. Zhang: J. Electrochem. Soc., 2010, vol. 157, pp. A765–A769.

    Article  Google Scholar 

  8. S. Sengupta, A. Patra, Y. Deo, K. Das, S.B. Majumder, and S. Das: Metall. Mater. Trans. E, 2017, vol. 4E, pp. 51–9.

    Google Scholar 

  9. H. Jo, M.I.N.J. Kim, H. Choi, Y. Sung, H. Choe, and D.C. Dunand: Metall. Mater. Trans. E, 2016, vol. 3E, pp. 46–54.

    Google Scholar 

  10. B.J. Plowman, L.A. Jones, and S.K. Bhargava: Chem. Commun., 2015, vol. 51, pp. 4331–46.

    Article  Google Scholar 

  11. B.H. Shin, J. Dong, and M. Liu: Adv. Mater., 2003, vol. 2, pp. 1610–14.

    Article  Google Scholar 

  12. N.D. Nikolić, K.I. Popov, L.J. Pavlović, and M.G. Pavlović: J. Electroanal. Chem., 2006, vol. 588, pp. 88–98.

    Article  Google Scholar 

  13. N.D. Nikolić, G. Branković, M.G. Pavlović, and K.I. Popov: J. Electroanal. Chem., 2008, vol. 621, pp. 13–21.

    Article  Google Scholar 

  14. N.D. Nikolić, G. Branković, V.M. Maksimović, M.G. Pavlović, and K.I. Popov: J. Electroanal. Chem., 2009, vol. 635, pp. 111–9.

    Article  Google Scholar 

  15. K.I. Popov, S.S. Djoki, and V.D. Jovi: Morphology of Electrochemically and Chemically Deposited. Springer, New York, 2015.

    Google Scholar 

  16. S. Cherevko and C. Chung: Appl. Surf. Sci. J., 2011, vol. 257, p. 8054.

    Article  Google Scholar 

  17. S.Y. Kang: J. Mater. Chem. A Mater. Energy Sustain., 2016, vol. 4, pp. 16356–67.

  18. S. Cherevko, X. Xing, and C. Chung: Electrochem. Commun., 2010, vol. 12, pp. 467–70.

    Article  Google Scholar 

  19. S. Cherevko and C. Chung: Electrochim. Acta, 2010, vol. 55, pp. 6383–90.

    Article  Google Scholar 

  20. C.-H.C. Serhiy Cherevko: Electrochem. Commun. J., 2011, vol. 13, pp. 16–19.

  21. C.A. Marozzi and A.C. Chialvo: Electrochim. Acta, 2000, vol. 45, pp. 2111–20.

    Article  Google Scholar 

  22. S. Eugénio, T.M. Silva, M.J. Carmezim, R.G. Duarte, and M.F. Montemor: J. Appl. Electrochem., 2014, vol. 44, pp. 455–65.

    Article  Google Scholar 

  23. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Appl. Surf. Sci., 2016, vol. 360, pp. 502–09.

    Article  Google Scholar 

  24. T. Wang, B. Zhao, H. Jiang, H.-P. Yang, K. Zhang, M.M.F. Yuen, X.-Z. Fu, R. Sun, and C.-P. Wong: J. Mater. Chem. A, 2015, vol. 3, pp. 23035–41.

    Article  Google Scholar 

  25. T. Wang, Y. Guo, B. Zhao, S. Yu, H.P. Yang, D. Lu, X.Z. Fu, R. Sun, and C.P. Wong: J. Power Sources, 2015, vol. 286, pp. 371–79.

    Article  Google Scholar 

  26. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Electrochim. Acta, 2016, vol. 211, pp. 900–10.

    Article  Google Scholar 

  27. K. Zhuo, M.G. Jeong and C.H. Chung: J. Power Sources, https://doi.org/10.1016/j.jpowsour.2013.01.055.

  28. L.D. Rafailović, D.M. Minić, H.P. Karnthaler, J. Wosik, T. Trišović, and G.E. Nauer: J. Electrochem. Soc., 2010, vol. 157, pp. D295–301.

    Article  Google Scholar 

  29. L. Mattarozzi, S. Cattarin, N. Comisso, A. Gambirasi, P. Guerriero, M. Musiani, L. Vázquez-Gómez, and E. Verlato: Electrochim. Acta, 2014, vol. 140, pp. 337–44.

    Article  Google Scholar 

  30. G.K. Hall and W.H. Williamson: Acta Metall., 1953, vol. 1, pp. 22–31.

  31. M. Fitzpatrick, A. Fry, P. Holdway, F. Kandil, J. Shackleton and L. Suominen: Measurement Good Practice Guide, 2005, p. 74.

  32. G.A. Di Bari: Modern Electroplating, 5th ed., Wiley, Hoboken, 2011, pp. 79–114.

  33. M. Boubatra, A. Azizi, G. Schmerber, and A. Dinia: Ionics (Kiel)., 2012, vol. 18, pp. 425–32.

    Article  Google Scholar 

  34. H.A. Smith and W.C. Bedoit Jr.: J. Phys. Colloid Chem., 1951, vol. 55, pp. 1085–104.

    Article  Google Scholar 

  35. W.A. Wesley, J.W. Carey, The electrodeposition of nickel from nickel chloride solutions. Trans. Electrochem. Soc., 75 (1939) 209-36.

    Article  Google Scholar 

  36. W. Nix: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2217–45.

    Article  Google Scholar 

  37. R. Abermann and R. Koch: Thin Solid Films, 1985, vol. 129, pp. 71–8.

    Article  Google Scholar 

  38. G. Zangari: Coatings, 2015, vol. 5, pp. 195–218.

    Article  Google Scholar 

  39. R.C. Cammarata: Prog. Surf. Sci., 1994, vol. 46, pp. 1–38.

    Article  Google Scholar 

  40. R.C. Cammarata, T.M. Trimble, and D.J. Srolovitz: J. Mater. Res., 2000, vol. 15, pp. 2468–74.

    Article  Google Scholar 

  41. R.W. Hoffman: Thin Solid Films, 1976, vol. 34, pp. 185–90.

    Article  Google Scholar 

  42. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, and C. V. Thompson: J. Appl. Phys., 2001, vol. 89, pp. 4886–97.

    Article  Google Scholar 

  43. S. Pathak, M. Guinard, M.G.C. Vernooij, B. Cousin, Z. Wang, J. Michler, and L. Philippe: Surf. Coatings Technol., 2011, vol. 205, pp. 3651–7.

    Article  Google Scholar 

  44. V.D.J. Popov Konstantin, S. Djokić, N.D. Nikolić and V.D. Jović: Morphology of Electrochemically and Chemically Deposited Metals, Springer, New York, 2016.

    Book  Google Scholar 

  45. B.C. Sherman, W.B. Euler, and R.R. Force: Chem. Educ., 1994, vol. 71, pp. 94–6.

    Article  Google Scholar 

  46. V.S.J. Craig, B.W. Ninham and R.M. Pashley: J. Phys. Chem, 1993, vol. 97, pp. 10192–97.

    Article  Google Scholar 

  47. R.K.B. Karlsson and A. Cornell: Chem. Rev., 2016, vol. 116, pp. 2982–3028.

    Article  Google Scholar 

  48. H. Vogt and R.J. Balzer: Electrochim. Acta, 2005, vol. 50, pp. 2073–9.

    Article  Google Scholar 

  49. W. CHENG, C. DUAN, P. LIU, and M. LU: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 1989–95.

    Article  Google Scholar 

  50. M.-J. Deng, J.-K. Chang, C.-C. Wang, K.-W. Chen, C.-M. Lin, M.-T. Tang, J.-M. Chen, and K.-T. Lu: Energy Environ. Sci., 2011, vol. 4, p. 3942.

    Article  Google Scholar 

  51. S.H. Cho, S.M. Cho, K.Y. Bae, B.H. Kim, and W.Y. Yoon: J. Power Sources, 2017, vol. 341, pp. 366–72.

    Article  Google Scholar 

  52. F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, and N.P. Brandon: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 6799–808.

    Article  Google Scholar 

  53. E. Wang, H. Wang, Z. Liu, R. Yuan, and Y. Zhu: J. Mater. Sci., 2015, vol. 50, pp. 4707–16.

    Article  Google Scholar 

  54. N. Michailidis, F. Stergioudi, H. Omar, D. Missirlis, Z. Vlahostergios, S. Tsipas, C. Albanakis, and B. Granier: Sol. Energy Mater. Sol. Cells, 2013, vol. 109, pp. 185–91.

    Article  Google Scholar 

  55. A. Santamaria and J. Zhang: in ASME 2017 Fluids Engineering Division Summer Meeting, 2017, p. V01BT10A009.

  56. C. Scheck, P. Evans, R. Schad, G. Zangari, J. Williams, and T.F. Isaacs-Smith: J. Phys. Condens. Matter, 2002, vol. 14, p. 12329.

    Article  Google Scholar 

  57. M. Boubatra, A. Azizi, G. Schmerber, and A. Dinia: J. Mater. Sci. Mater. Electron., 2011, vol. 22, pp. 1804–9.

    Article  Google Scholar 

  58. E.H. Nkuna, O.S.I. Fayomia, and A.P.I. Popoola: Procedia Manuf., 2017, vol. 7, pp. 573–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Das.

Additional information

Manuscript submitted June 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, S., Patra, A., Jena, S. et al. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits. Metall Mater Trans A 49, 920–937 (2018). https://doi.org/10.1007/s11661-017-4452-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4452-8

Navigation