Skip to main content

Advertisement

Log in

High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young’s modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start Ms and Mf finish temperatures estimated from this study are, Ms = 652 K (379 °C) and Mf =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset (Ac1) and completion (Ac3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ elD , the elastic Debye temperature and γG, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ elD  = 465 K (192 °C) and γG = 1.57.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Grimvall: Thermophysical Properties of Materials, 2nd ed., North-Holland, Elsevier, Amsterdam, 1999, pp. 37-68.

    Google Scholar 

  2. Ledbetter H (1983) Elastic Properties, In: Reed RP, Clark AR (eds) Materials at low temperatures American Society of Metals, Metals Park, pp. 1-45.

    Google Scholar 

  3. Ledbetter H (2006) Mater. Sci. Eng, A, 442:31-34.

    Article  Google Scholar 

  4. A. Migliori, J. P. Baiardo and T. W. Darling: Los Alamos Science, 2000, No. 26, pp. 208-225.

    Google Scholar 

  5. Y. Wang, J. J. Wang, H. Zhang, V. R. Manga, S. L. Shang, L -Q Chen, Z-K Liu: J. Phys 2010, 22:1-8

    Google Scholar 

  6. D. C. Wallace: Statistical Physics of Crystals and Liquids, World Scientific Pub., Singapore, 2002, pp. 1-303.

    Google Scholar 

  7. Stixrude L (2001) Microscopic Theory of Elastic Constants Handbook of Elastic Properties of Solids, Liquids, and Gases. In: Levy M, Bass H, Stern R (eds.) Vol II: Elastic Properties of Solids. Academic Press, Boston, pp. 640-671.

    Google Scholar 

  8. Y. Ikeda: Mater. Trans. JIM, 1997, Vol. 38, pp.761-770.

    Article  Google Scholar 

  9. Mehl MJ, Klein BM, Papaconstantopoulos DA (1994) First Principles Calculation of Elastic Properties. In: J. H. Westbrook and R. L. Fleischer (eds) Intermetallic Compounds, Vol. I: Principles. John Wiley, Chichester, pp. 195-210.

    Google Scholar 

  10. Anderson OL (1995) Equations of State for Solids in Geophysics and Ceramic Science. Oxford University Press, New York, pp. 1-383.

    Google Scholar 

  11. S. Raju and A. K. Rai: J. Nucl. Mater., 2010, Vol. 408, pp.40-44.

    Article  Google Scholar 

  12. S. Raju, K. Sivasubramanian and E. Mohandas: Scripta Mater., 2001, Vol. 44 pp. 269-274.

    Article  Google Scholar 

  13. S. Raju, K. Sivasubramanian and E. Mohandas: Solid St. Commun., 2002, Vol. 124, pp. 151–156.

    Article  Google Scholar 

  14. Michel H. G. Jacobs and Harry A. J. Oonk: Phys. Chem. Chem. Phys., 2000, Vol. 2, pp. 2641-2646.

    Google Scholar 

  15. G. Simmons and H. Wang: Single crystal elastic constants and calculated aggregate properties: A handbook, II edition, 1971, MIT Press, Cambridge, Mass, pp.1-370.

    Google Scholar 

  16. Hearmon RFS (1979) Landolt Bornstein Numerical Data and Functional Relationships in Science and Technology. In: Hellwege K-H (ed) Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystal. Springer, Berlin, pp. 1–244.

    Google Scholar 

  17. H. Wawra: Zeit. fur Metallkunde, 1978, Vol. 69, pp. 518-523.

    Google Scholar 

  18. Isaak DG (2001) Elastic properties of minerals and planetary objects. In: Levy M, Bass H, Stern R (eds) Handbook of Elastic Properties of Solids, Liquids, and Gases Volume III: Biological and Organic Materials Earth and Marine Sciences. Academic Press, Boston, pp. 325-376.

    Google Scholar 

  19. G. R. Speich, A. J. Schwoeble and W. C. Leslie: Metall. Trans., 1972, Vol.3, pp. 2031-2037.

    Article  Google Scholar 

  20. Ledbetter H, Kim S (2001) Monocrystal Elastic Constants and Derived Properties of the Cubic and the Hexagonal Elements. In: In: Levy M, Bass H, Stern R (eds) Handbook of Elastic Properties of Solids Liquids and Gases Volume II: Elastic Properties of Solids. Academic Press, Boston, pp. 97-106.

    Google Scholar 

  21. Hassel Ledbetter: Cryogenics, 1982, Vol. 22, pp. 653-656.

    Article  Google Scholar 

  22. W. F. Weston, H. M. Ledbetter and E. R. Naimon: Mater. Sci. Engg,.1975, Vol. 20, pp. 185-194.

    Article  Google Scholar 

  23. H. M. Ledbetter, M. W. Austin and S. A. Kim: Mater. Sci. Engg., 1987, Vol.85, pp. 85-89.

    Article  Google Scholar 

  24. Ulrich Bohnenkamp and Rolf Sandstrom: Steel Res., 2000, Vol. 71, pp. 94-99.

    Article  Google Scholar 

  25. T. Darling, A. Migliori, P.E. Armstrong, R. Vaidya, C. Scherer and T. Lowe: Reports on the measurement of elastic properties of 51XX series of steels for the heat treatment distortion project, Los Alamos Report, LA-UR-97, 1997, pp. 1–64.

  26. S. Sharafat, G.R. Odette and J. Blanchard: J. Nucl. Mater., 2009, Vol. 386-388, pp.896–899.

    Article  Google Scholar 

  27. K. Laha, S. Saroja, A. Moitra, R. Sandhya, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar: J. Nucl. Mater., 2013, Vol. 439, pp. 41-50.

    Article  Google Scholar 

  28. N. Baluc, R. Schäublin, P. Spätig and M. Victoria: Nucl. Fusion, 2004, Vol. 44, pp. 56-61.

    Article  Google Scholar 

  29. S. Raju, B. Jeyaganesh, A. K. Rai, R. Mythili, S. Saroja, E. Mohandas, M. Vijayalakshmi, K. B. S. Rao and Baldev Raj: J. Nucl. Mater., 2009, Vol. 389, pp. 385-393.

    Article  Google Scholar 

  30. S. Raju, B. Jeyaganesh, A. K. Rai, R. Mythili, S. Saroja and Baldev Raj: J. Nucl. Mater., 2010, Vol. 405, pp.59–69.

    Article  Google Scholar 

  31. Ravi Kirana, S Raju, R Mythili, S Saibaba, T Jayakumar, and E Rajendra Kumar: Steel Res., 2015, Vol. 86, pp. 825-840.

    Article  Google Scholar 

  32. Ravikirana, R. Mythili, S Raju, S Saroja, G. Paneerselvam, T Jayakumar and E. Rajendra Kumar: Bull. Mater. Sci., 2014, Vol. 37, pp.1453-1460.

    Article  Google Scholar 

  33. S. Raju, B. Jeyaganesh, A. K. Rai, S. Saroja, E. Mohandas, M. Vijayalakshmi, and Baldev Raj: Int. J. Thermophys., 2010, Vol.31, pp. 399-415.

    Article  Google Scholar 

  34. S. Raju, H. Tripathy, A. K. Rai, R. N. Hajra, S. Saroja, T Jayakumar and E. Rajendra Kumar: J. Nucl. Mater., 2015, Vol. 459, pp.150–158.

    Article  Google Scholar 

  35. M. D. Mathew, J. Vanaja, K. Laha, G. Varaprasad Reddy, K. S. Chandravathi and K. Bhanu Sankara Rao: J. Nucl. Mater., 2011, Vol. 417, pp.77-80.

    Article  Google Scholar 

  36. R. Sandhya, Vani Shankar, K. Mariappan, M. D. Mathew, T. Jayakumar and E. Rajendra Kumar, Adv. Mater. Res., 2014, Vol. 891-892, pp. 383-388.

    Article  Google Scholar 

  37. A. Moitra, A. Das Gupta, S. Sathyanarayanan, G. Sasikala, S. K. Albert, S. Saroja, A. K. Bhaduri, E. Rajendra Kumar and T. Jayakumar: Procedia Engineering, 2014, Vol. 86, pp.258-263.

    Article  Google Scholar 

  38. G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck and O. Van der Biest: Rev. Sci. Instrum., 1997, Vol. 68, pp. 4511-4515.

    Article  Google Scholar 

  39. G. Roebben, R.–G. Duan, D. Sciti and O. Van der Biest: J. Euro Ceram Soc., 2002, Vol. 22, pp. 2501-2509.

    Article  Google Scholar 

  40. W. Pabst, E. Gregorova and M. Cerny: J. Euro Ceram Soc., 2013, Vol. 33, pp. 3085-3093.

    Article  Google Scholar 

  41. J. D. Lord and R. Morrell: NPL Measurement Good Practice Guide: Elastic Modulus Measurement, NPL Report, 2006, Teddington, U. K., pp. 1-98.

    Google Scholar 

  42. M. Radovic, E. Lora-Curzio and L. Riester: Mater. Sci. Engg. A, 2004, Vol. 368, pp.56-70.

    Article  Google Scholar 

  43. Javier Etcheverry, Gustavo Sanchez, Nicholas Bonades and Leandro Iglesias Raggu: IV Congresso Iberoamericano de Acoustica, 2008, FIA A025, pp.1-5.

    Google Scholar 

  44. A. K. Swarnakar, S. Giménez, S. Salehi, J. Vleugels and O. Van der Biest: Key Engg. Mater., 2007, Vol. 333, pp.235-238.

    Article  Google Scholar 

  45. A. Brebels and B. Bollen: Non destructive evaluation of materials properties as a function of temperature, in: NDE India-2014, Conference Proceedings, 2015, Vol. 20, No.6, pp. 1–10.

  46. ASTM E1876-15: Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration, 2015, ASTM International, West Conshohocken, PA, pp. 1-17.

    Google Scholar 

  47. ASTM C1259-15: Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration, 2015, ASTM International, West Conshohocken, PA, pp. 1-17.

    Google Scholar 

  48. Jeyaganesh B, Raju S, Rai AK, Mohandas E, Vijayalakshmi M, Rao ABS, Raj B (2011) Mater. Sci. Tech. 27:500-512.

    Article  Google Scholar 

  49. Hong–Seok Yang and H. K. D. H. Bhadeshia: Scripta Mater., 2009, Vol. 60, pp. 493-495.

    Article  Google Scholar 

  50. Cast´an T, Vives E, Planes A (1990) J. Phys. 2:1743-1752.

    Google Scholar 

  51. Hidenori Terasaki, Hideki Yamagishi, Koji Moriguchi, Yusaku Tomio and Yu-ichi Komizo, ISIJ Int., 2011, Vol.51, pp. 1566-1568.

    Article  Google Scholar 

  52. Bhadeshia H, Honeycombe R (2017) Steels: Microstructure and Properties. 4th edition. Elsevier, London.

    Google Scholar 

  53. A.-A. F. Tavassoli, J.-W. Rensman, M. Schirra and K. Shiba: Fusion Eng. & Design, 2002, Vol. 61-62, pp. 617-628.

    Article  Google Scholar 

  54. Yin YF, Faulkner RG (2008) Physical and elastic properties of creep resistant steels. In: Abe F, Kern T-U, Viswanathan R (eds.) Creep-resistant steels. Woodhead Pub Co, Cambridge, pp. 217-240.

    Chapter  Google Scholar 

  55. K. Haarmann, J. C. Vaillant, B. Vandenberghe, W. Bendick and A. Arbab: The T91/P91 Book, 2002, Vallourec and Mannesmann tubes, Boulogne.

    Google Scholar 

  56. Richardot D, Vaillant JC, Arbab A, Bendick W (2000) The T92/P92 book. Vallourec & Mannesmann tubes, Boulogne.

    Google Scholar 

  57. K. Sawada, T. Ohba, H. Koshima and K. Kimura: Mater. Sci. Engg. A, 2005, Vol. 394, pp. 36-42.

    Article  Google Scholar 

  58. B. A. Latella and S. R. Humphries: Scripta Metall., 2004, Vol. 51, pp. 635-639.

    Article  Google Scholar 

  59. http://www.matweb.com/

  60. Kim SA, Johnson WL (2007) Mater. Sci. Engg. A 452-453:633-639

    Article  Google Scholar 

  61. G. R. Speich and W. C. Leslie: Metall. Trans., 1973, Vol.4, pp. 1873-1875.

    Article  Google Scholar 

  62. S. Raju, B. Jeyaganesh, A. Banerjee and E. Mohandas: Mater. Sci. Eng. A, 2007, Vol. 465, pp. 29-37.

    Article  Google Scholar 

  63. H. Ledbetter: Phys. Stat. Solidi B, 1994, Vol. 181, pp. 81-85.

    Article  Google Scholar 

  64. S. Raju and A. K. Rai: J. Nucl. Mater., 2011, Vol. 408, pp. 40-44.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Bart Bollen in educating us on the technical nuances of IET technique, as adapted in IMCE RFDA equipment. The continued support and encouragement offered by Dr. A. K. Bhaduri, Director, IGCAR and Dr. G. Amarendra, Director, Metallurgy and Materials Group, IGCAR are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Raju.

Additional information

Manuscript submitted August 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, H., Raju, S., Hajra, R.N. et al. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique. Metall Mater Trans A 49, 979–989 (2018). https://doi.org/10.1007/s11661-017-4449-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4449-3

Navigation