Skip to main content
Log in

Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress–strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation–dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.R. Mitchell: Fatigue and microstructure, ASM, Materials Park, OH, 1978, pp. 385-438.

    Google Scholar 

  2. S.S. Manson: Exp. Mech., 1965, vol. 5, pp. 193-226.

    Article  Google Scholar 

  3. U. Muralidharan and S.S. Manson: J. Eng. Mater. Technol., 1988, vol. 110, pp. 55-58.

    Article  Google Scholar 

  4. J.H. Ong: Int. J. Fatigue, 1993, vol. 15, pp. 213-219.

    Article  Google Scholar 

  5. M.L. Roessle and A. Fatemi: Int. J. Fatigue, 2000, vol. 22, pp. 495-511.

    Article  Google Scholar 

  6. J.C. Grosskreutz: Metall. Trans., 1972, vol. 3, pp. 1255-1262.

    Article  Google Scholar 

  7. H. Mughrabi, H.W. Höppel, and M. Kautz: Scr. Mater., 2004, vol. 51, pp. 807-812.

    Article  Google Scholar 

  8. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Scr. Mater., 2011, vol. 64, pp. 954-957.

    Article  Google Scholar 

  9. R. Liu, Z.J. Zhang, P. Zhang, and Z.F. Zhang: Acta Mater., 2015, vol. 83, pp. 341-356.

    Article  Google Scholar 

  10. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang: Acta Mater., 2014, vol. 74, pp. 200-214.

    Article  Google Scholar 

  11. K. Lu: Nat. Rev. Mater., 2016, vol. 1, p. 16019.

    Article  Google Scholar 

  12. Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, and H.T. Wang: Nat. Commun., 2014, vol. 5, p. 3580.

    Google Scholar 

  13. I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty: Acta Mater. 2007, vol. 55, pp. 4983-4993.

    Article  Google Scholar 

  14. K.E. Prasad, B. Das, U. Maitra, U. Ramamurty, and C.N.R. Rao: Proc. Natl. Acad. Sci., 2009, vol. 106, pp. 13186-13189.

    Article  Google Scholar 

  15. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer: Int. J. Plasticity, 2000, vol. 16, pp. 1391-1409.

    Article  Google Scholar 

  16. H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan, and Z.F. Zhang: Mater. Sci. Eng. A, 2014, vol. 607, pp. 551-558.

    Article  Google Scholar 

  17. B. Bal, B. Gumus, G. Gerstein, D. Canadinc, and H. J. Maier: Mater. Sci. Eng. A 2015, vol. 632, pp. 29-34.

    Article  Google Scholar 

  18. H.W. Yen, M. Huang, C. P. Scott, and J.R. Yang: Scripta Mater. 2012, vol. 66, pp. 1018-1023.

    Article  Google Scholar 

  19. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, and Z.F. Zhang: Acta Mater., 2016, vol. 118, pp. 196-212.

    Article  Google Scholar 

  20. C.W. Shao, F. Shi, and X.W. Li: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1610-1620.

    Article  Google Scholar 

  21. S. Heino and B. Karlsson: Acta Mater., 2001, vol. 49, pp. 339-351.

    Article  Google Scholar 

  22. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, and Z.F. Zhang: Acta Mater., 2016, vol. 103, pp. 781-795.

    Article  Google Scholar 

  23. A.A. Saleh, E.V. Pereloma, and A.A. Gazder: Acta Mater., 2013, vol. 61, pp. 2671-2691.

    Article  Google Scholar 

  24. . Polák, F. Fardoun, and S. Degallaix: Mater. Sci. Eng. A, 1996, vol. 215, pp. 104-112.

    Article  Google Scholar 

  25. D. Kuhlmann-Wilsdorf, and C. Laird: Mater. Sci. Eng., 1979, vol. 37, pp. 111-120.

    Article  Google Scholar 

  26. C.W. Shao, P. Zhang, Z.J. Zhang, and Z.F. Zhang: Scr. Mater. 2017, vol. 140, pp. 76-81.

    Article  Google Scholar 

  27. L. Lu, X. Chen, X.X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607-610.

    Article  Google Scholar 

  28. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449-6462.

    Article  Google Scholar 

  29. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater. 2008, vol. 58, pp. 484-487.

    Article  Google Scholar 

  30. M. Abbasi, S. Kheirandish, Y. Kharrazi, and J. Hejazi: Mater. Sci. Eng. A 2009, vol. 513, pp. 72-76.

    Article  Google Scholar 

  31. B. Bal, M. Koyama, G. Gerstein, H. J. Maier, and K. Tsuzaki: Int. J. Hydrogen Energ. 2016, vol. 41, pp. 15362-15372.

    Article  Google Scholar 

  32. B. Gumus, B. Bal, G. Gerstein, D. Canadinc, H. J. Maier, F. Guner, and M. Elmadagli: Mater. Sci. Eng. A 2015, vol. 648, pp. 104-112.

    Article  Google Scholar 

  33. J. Nakano and P.J. Jacques: CALPHAD, 2010, vol. 34, pp. 167-175.

    Article  Google Scholar 

  34. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387, pp. 158-162.

    Article  Google Scholar 

  35. S.X. Ding, C.P. Chang, J.F. Tu, and K.C. Yang: Mater. Sci. Technol., 2013, vol. 29, pp. 1048-1054.

    Article  Google Scholar 

  36. C. Q. Li, D. K. Xu, B. J. Wang, L. Y. Sheng, and E. H. Han: J. Mater. Sci. Technol. 2016, vol. 32, pp. 1232-1238.

    Article  Google Scholar 

  37. Y.L. Cai, S.L. Yang, S.H. Fu, D. Zhang, and Q.C. Zhang: J. Mater. Sci. Technol. 2017, vol. 33, pp. 580-586.

    Article  Google Scholar 

  38. W.H. Wang, D. Wu, R.S. Chen, and X.N. Zhang: J. Mater. Sci. Technol. 2017. doi:10.1016/j.jmst.2017.06.004.

    Google Scholar 

  39. S.J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Mater. 2011, vol. 59, pp. 6809-6819.

    Article  Google Scholar 

  40. A.H. Cottrell: Trans. Met. Soc. AIME 1958, 212: 192.

    Google Scholar 

  41. L. J. Cuddy and W. C. Leslie: Acta Metall. 1972, vol. 20, pp. 1157-1167.

    Article  Google Scholar 

  42. L. Buchinger, A.S. Cheng, S. Stanzl, and C. Laird: Mater. Sci. Eng., 1986, vol. 80, pp. 155-167.

    Article  Google Scholar 

  43. H. Inui, S.I. Hong, and C. Laird: Acta Metall. Mater., 1990, vol. 38, pp. 2261-2274.

    Article  Google Scholar 

  44. S. Suresh: Fatigue of materials, Cambridge university press, Cambridge, 1998.

    Book  Google Scholar 

  45. X.W. Li, N. Peng, X.M. Wu, and Z.G. Wang: Metall. Mater. Trans. A 2014, vol. 45, pp. 3835-3843.

    Article  Google Scholar 

  46. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177-2183.

    Article  Google Scholar 

  47. P. Li, S.X. Li, Z.G. Wang, and Z.F. Zhang: Prog. Mater. Sci., 2011, vol. 56, pp. 328-377.

    Article  Google Scholar 

  48. R. Liu, Z.J. Zhang, and Z.F. Zhang: Mater. Sci. Eng. A, 2016, vol. 666, pp. 123-138.

    Article  Google Scholar 

  49. Z.J. Zhang, X.H. An, P. Zhang, M.X. Yang, G. Yang, S.D. Wu, and Z.F. Zhang: Scr. Mater., 2013, vol. 68, pp. 389-392.

    Article  Google Scholar 

  50. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196-206.

    Article  Google Scholar 

  51. R. Liu, Z.J. Zhang, L.L. Li, X.H. An, and Z.F. Zhang: Sci. Rep., 2015, vol. 5, p. 9550.

    Article  Google Scholar 

  52. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scr. Mater., 2008, vol. 59, pp. 963-966.

    Article  Google Scholar 

  53. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scr. Mater., 2006, vol. 55, pp. 629-631.

    Article  Google Scholar 

  54. P. Yang, L. Meng, Q. Xie, H. Ding, and Z. Tang: Scr. Mater., 2007, vol. 56, pp. 931-934.

    Article  Google Scholar 

  55. L. Chen, H.S. Kim, S.K. Kim, and B.C. De Cooman: Isij Int., 2007, vol. 47, pp. 1804-1812.

    Article  Google Scholar 

  56. H.K. Yang, Z.J. Zhang, and Z.F. Zhang: Scr. Mater., 2013, vol. 68, pp. 992-995.

    Article  Google Scholar 

  57. Z.-H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126-1135.

    Article  Google Scholar 

  58. K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349-352.

    Article  Google Scholar 

  59. C.E. Feltner and J.D. Morrow: J. Basic Eng., 1961, vol. 83, pp. 15-22.

    Article  Google Scholar 

  60. J.D. Morrow: ASTM International, 1965, vol. 378, p. 45.

    Google Scholar 

  61. A.H. Cottrell: Dislocations and plastic flow in crystals, Clarendon Press, Oxford, 1965.

    Google Scholar 

  62. M.A. Meyers and K.K. Chawla: Mechanical behavior of materials, Cambridge university press, Cambridge, 2009.

    Google Scholar 

  63. G.I. Taylor: Proc. Roy. Soc., 1934, vol. 145, pp. 362-387.

    Article  Google Scholar 

  64. GI Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307–324.

    Google Scholar 

  65. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171-273.

    Article  Google Scholar 

  66. T. Rasmussen, K.W. Jacobsen, T. Leffers, O.B. Pedersen, S.G. Srinivasan, and H. Jonsson: Phys. Rev. Lett., 1997, vol. 79, pp. 3676-3679.

    Article  Google Scholar 

  67. S.I. Hong and C. Laird: Mater. Sci. Eng. A, 1990, vol. 128, pp. 55-75.

    Article  Google Scholar 

  68. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Acta Mater., 2009, vol. 57, pp. 1586-1601.

    Article  Google Scholar 

  69. T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen, and K.W. Jacobsen: Phys. Rev. Lett., 2000, vol. 85, pp. 3866-3869.

    Article  Google Scholar 

  70. T. Rasmussen, K.W. Jacobsen, T. Leffers, and O.B. Pedersen: Phys. Rev. B, 1997, vol. 56, pp. 2977-2990.

    Article  Google Scholar 

  71. U. Essmann, U. Gösele, and H. Mughrabi: Philos. Mag. A, 1981, vol. 44, pp. 405-426.

    Article  Google Scholar 

  72. F. Seitz, In: W. Shockley, R. J. H. Hollomon, R. Maurer, and F. Seitz: Imperfections in Nearly Perfect Crystals, John Wiley & Sons. Inc, New York, 1952, pp. 3-76.

    Google Scholar 

  73. .L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, and Z.F. Zhang: Nat. Commun., 2014, vol. 5, p. 3536.

    Google Scholar 

  74. R.J. Amodeo and N.M. Ghoniem: Phys. Rev. B, 1990, vol. 41, pp. 6958-6967.

    Article  Google Scholar 

  75. I. Groma and B. Bakó: Phys. Rev. Lett., 2000, vol. 84, pp. 1487-1490.

    Article  Google Scholar 

  76. J.C. Grosskreutz, H. Mughrabi, and A.S. Argon: Constitutive equations in plasticity, Massachusetts Institute of Technology Press, Cambridge, MA, 1975, pp. 251.

    Google Scholar 

  77. A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, and A.A. Gazder: Acta Mater., 2013, vol. 61, pp. 5247-5262.

    Article  Google Scholar 

  78. H. Mughrabi: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1257-1279.

    Article  Google Scholar 

  79. A. Abel and H. Muir: Philos. Mag., 1973, vol. 27, pp. 585-594.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51301179, 51331007 and 51501198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhang.

Additional information

Manuscript submitted February 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C.W., Zhang, P., Zhang, Z.J. et al. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt. Metall Mater Trans A 48, 5833–5848 (2017). https://doi.org/10.1007/s11661-017-4360-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4360-y

Navigation