Skip to main content
Log in

Predicting Macro- and Microscopic Responses of Dual-Phase Steels under Low Cycle Fatigue Based on Multi-scale Finite Element Methods

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current study, three different combinations of dual-phase (DP) steels,i.e., ferrite–pearlite, ferrite–bainite, and ferrite–martensite containing the nearly same amount of second phase/phase mixture, have been developed following suitable heat-treatment schedules using a low carbon steel. Tensile and strain-controlled low cycle fatigue (LCF) tests at different strain amplitudes have been performed to understand the role of microstructure on the static and cyclic plasticity characteristics of DP steels. The experimental results reveal wide variations in the nature of cyclic hardening–softening behavior depending on the nature of the second phase. For the isotropic hardening, a new formulation considering the variation of yield stress as a function of memory stress and accumulated plastic strain has been incorporated, and Ohno–Wang kinematic hardening model has been used to simulate the observed fatigue response of DP structures. The developed model is capable of predicting the fatigue characteristics such as the stress amplitude versus the number of cycles, maximum hardening stress, and the progressive hysteresis loops. Further, the LCF simulations have been performed for the developed DP steels based on the real microstructure-based models adopting a sub-modeling technique. The stress and strain levels at different phases in the DP steels and their influence on the fatigue properties are quantified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

DP steel:

Dual-phase steel

\(f\) :

Von Mises yield function

\(\underline{S}\) :

Deviatoric stress tensor

\(\underline{\alpha }\) :

Deviatoric backstress tensor

\(\underline{\varepsilon }^{p}\) :

Plastic strain tensor

\(d\underline{\alpha }\) :

Increment in total backstress

\(\dot{p}\) :

Increment in plastic strain

\(c^{\left( i \right)} ,{\kern 1pt} \gamma^{\left( i \right)} ,{\kern 1pt} {\kern 1pt} r^{\left( i \right)}\) :

Hardening coefficients

\(s\) :

Memory stress

\(p\) :

Accumulated plastic strain

\(\sigma\) :

Engineering stress

\(\varepsilon\) :

Engineering strain

\(\sigma_{cy}\) :

Cyclic yield stress

\(\sigma_{r}\) :

Stress range

\(\sigma_{a}\) :

Stress amplitude

\(\sigma_{{a{\kern 1pt} o}}\) :

Stress amplitude of first cycle subjected to fatigue load

\(p_{0}\) :

Range of plastic strain memory

\(\underline{\underline{D}}^{e}\) :

Elastic stiffness tensor

\(\underline{1}\) and \(\underline{\underline{I}}\) :

Second and fourth rank unit tensor

References

  1. F.H. Froes, Advanced Metals for Aerospace and Automotive Use, Mater. Sci. Eng. A, 1994, 184(2), p 119–133.

    Article  CAS  Google Scholar 

  2. D.K. Dwivedi, Adhesive Wear Behaviour of Cast Aluminium-Silicon Alloys: Overview, Mater. Des., 2010, 31(5), p 2517–2531. https://doi.org/10.1016/j.matdes.2009.11.038

    Article  CAS  Google Scholar 

  3. S.T. Olohunde, A.R.M. Hafizi, I. Jamaliah, A.A. Al-Bakoosh, O.O. Segun and I.O. Sadiq, Corrosion Resistance of Aluminium-Silicon Hypereutectic Alloy from Scrap Metal, J. Bio- Tribo-Corrosion, Springer International Publishing, 2019, 5(2), p 1–8. https://doi.org/10.1007/s40735-019-0224-x

    Article  Google Scholar 

  4. G. Janardhan, G. Mukhopadhyay and K. Dutta, Microstructural Evolution and Failure Behavior of Resistance Spot-Welded Dual Phase Steel, Springer, Processing and Characterization of Materials, 2021, p 47–54

    Google Scholar 

  5. U. Liedl, S. Traint and E.A. Werner, An Unexpected Feature of the Stress-Strain Diagram of Dual-Phase Steel, Comput. Mater. Sci., 2002, 25(1–2), p 122–128.

    Article  CAS  Google Scholar 

  6. R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry: A Review, Arch. Civ. Mech. Eng., Committee of Civil and Mechanical Engineering, 2008, 8(2), p 103–117, doi:https://doi.org/10.1016/s1644-9665(12)60197-6.

  7. M. Sarwar, T. Manzoor, E. Ahmad and N. Hussain, The Role of Connectivity of Martensite on the Tensile Properties of a Low Alloy Steel, Mater. Des., 2007, 28(6), p 1928–1933.

    Article  CAS  Google Scholar 

  8. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel and J.R. Fekete, Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels, J. Eng. Mater. Technol. Trans. ASME, 2009, 131(4), p 0412051–0412059.

    Article  Google Scholar 

  9. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer and K.S. Kumar, Deformation Response of Ferrite and Martensite in a Dual-Phase Steel, Acta Materialia, 2014, 62, p 197–211. https://doi.org/10.1016/j.actamat.2013.10.001

    Article  CAS  Google Scholar 

  10. A. Bayram, A. Uguz and M. Ula, Effects of Microstructure and Notches on the Mechanical Properties of Dual-Phase Steels, Mater. Charact., 1999, 43(4), p 259–269.

    Article  CAS  Google Scholar 

  11. Y.D. Huang and L. Froyen, Important Factors to Obtain Homogeneous and Ultrafine Ferrite-Pearlite Microstructure in Low Carbon Steel, J. Mater. Process. Technol., 2002, 124(1–2), p 216–226.

    Article  CAS  Google Scholar 

  12. N. Saeidi and A. Ekrami, Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steels, Mater. Sci. Eng. A, 2009, 523(1–2), p 125–129.

    Article  Google Scholar 

  13. R.-M. Rodriguez and I. Gutiérrez, Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures, Mater. Sci. Forum, 2003, 426–432, p 4525–4530.

    Article  Google Scholar 

  14. B. Ravi Kumar, T. Nanda, V. Singh, M. Adhikary, N. Halder and T. Venugopalan, Effect of Tailoring Martensite Shape and Spatial Distribution on Tensile Deformation Characteristics of Dual Phase Steels, J. Eng. Mater. Technol. Trans. ASME, 2018, 140(2), p 1–11.

    Article  Google Scholar 

  15. Surajit Kumar Paul and Monideepa Mukherjee, Determination of Bulk Flow Properties of a Material from the Flow Properties of Its Constituent Phases, Computat. Mater. Sci., 2014, 84, p 1–12. https://doi.org/10.1016/j.commatsci.2013.11.039

    Article  CAS  Google Scholar 

  16. Jiming Zhou, Arun M. Gokhale, Ashok Gurumurthy and Shrikant P. Bhat, Realistic Microstructural RVE-based Simulations of Stress–Strain Behavior Of A Dual-Phase Steel Having High Martensite Volume Fraction, Mater. Sci. Eng.: A, 2015, 630, p 107–115. https://doi.org/10.1016/j.msea.2015.02.017

    Article  CAS  Google Scholar 

  17. P. Srithananan, P. Kaewtatip and V. Uthaisangsuk, Micromechanics-Based Modeling of Stress-Strain and Fracture Behavior of Heat-Treated Boron Steels for Hot Stamping Process, Mater. Sci. Eng. A Elsevier, 2016, 667, p 61–76. https://doi.org/10.1016/j.msea.2016.04.065

    Article  CAS  Google Scholar 

  18. N.H. Abid, R.K. Abu Al-Rub and A.N. Palazotto, Micromechanical Finite Element Analysis of the Effects of Martensite Particle Size and Ferrite Grain Boundaries on the Overall Mechanical Behavior of Dual Phase Steel, J. Eng. Mater. Technol. Trans. ASME, 2017, 139(4), p 1–8.

    Article  Google Scholar 

  19. S.R. Mediratta, V. Ramaswamy, and P.R. Rao, Low Cycle Fatigue Behaviour of Dual-Phase Steel with Different Volume Fractions of Martensite, 1985, 2(2), p 101–106.

  20. P.C. Chakraborti and M.K. Mitra, Room Temperature Low Cycle Fatigue Behaviour of Two High Strength Lamellar Duplex Ferrite-Martensite (DFM) Steels, Int. J. Fatigue, 2005, 27(5), p 511–518.

    Article  CAS  Google Scholar 

  21. M. Tayanc, A. Aytac and A. Bayaram, The Effect of Carbon Content on Fatigue Strength of Dual-Phase Steels, Mater. Des., 2007, 28, p 1827–1835.

    Article  CAS  Google Scholar 

  22. T. Hilditch, H. Beladi, P. Hodgson, and N. Standford, Role of Microstructure in the Low Cycle Fatigue of Multi-Phase Steels, 2012, 534, 288–296.

  23. Surajit Kumar Paul, Nicole Stanford and Timothy Hilditch, Effect of Martensite Volume Fraction on Low Cycle Fatigue Behaviour of Dual Phase Steels: Experimental and Microstructural Investigation, Mater. Sci. Eng.: A, 2015, 638, p 296–304. https://doi.org/10.1016/j.msea.2015.04.059

    Article  CAS  Google Scholar 

  24. Q. Zhou, L. Qian, J. Meng, L. Zhao and F. Zhang, Low-Cycle Fatigue Behavior and Microstructural Evolution in a Low-Carbon Carbide-Free Bainitic Steel, Mater. Des., 2015, 85, p 487–496.

    Article  CAS  Google Scholar 

  25. Peter J Armstrong, A Mathematical Representation of the Multiaxial Bauschinger Effect, CEBG Rep., 1966, 731.

  26. J.L. Chaboche, Time-Independent Constitutive Theories for Cyclic Plasticity, Int. J. Plast., 1986, 2(2), p 149–188.

    Article  Google Scholar 

  27. N. Ohno and J.D. Wang, Kinematic Hardening Rules with Critical State of Dynamic Recovery, Part I: Formulation and Basic Features for Ratchetting Behavior, Int. J. Plast., 1993, 9(3), p 375–390.

    Article  CAS  Google Scholar 

  28. T. Hassan and S. Kyriakides, Ratcheting in Cyclic Plasticity, Part I: Uniaxial Behavior, Int. J. Plast., 1992, 8(1), p 91–116.

    Article  CAS  Google Scholar 

  29. M. Abdel-Karim and N. Ohno, Kinematic Hardening Model Suitable for Ratchetting with Steady-State, Int. J. Plast., 2000, 16(3), p 225–240.

    Article  CAS  Google Scholar 

  30. R. Halama, J. Sedlák, and M. Šofer, Phenomenological Modelling of Cyclic Plasticity, Numer. Model., IntechOpen Rijeka, Croatia, 2012, 1, p 329–354.

  31. G.R. Ahmadzadeh and A. Varvani-Farahani, Ratcheting Assessment of Steel Alloys under Step-Loading Conditions, Mater. Des. Elsevier, 2013, 51, p 231–241.

    CAS  Google Scholar 

  32. N. Khutia, P.P. Dey, Surajit Kumar Paul and S. Tarafder, Development of non Masing Characteristic Model for LCF and Ratcheting Fatigue Simulation of SA333 C–Mn steel, Mech. Mater., 2013, 65, p 88–102. https://doi.org/10.1016/j.mechmat.2013.05.016

    Article  Google Scholar 

  33. S.K. Basantia, Md Abu Bakkar, N. Khutia and D. Das, Simulation of LCF Characteristic of AA6063 Al Alloy Under Different Aging Conditions, Mater. Today: Proceed., 2015, 2(4–5), p 2226–2235. https://doi.org/10.1016/j.matpr.2015.07.242

    Article  CAS  Google Scholar 

  34. B. Das and A. Singh, Understanding Strain Controlled Low Cycle Fatigue Response of P91 Steel through Experiment and Cyclic Plasticity Modeling, Fusion Eng. Des., 2019, 138, p 125–137.

    Article  CAS  Google Scholar 

  35. X. Sun, K.S. Choi, A. Soulami, W.N. Liu and M.A. Khaleel, On Key Factors Influencing Ductile Fractures of Dual Phase (DP) Steels, Mater. Sci. Eng: A, 2009, 526(1–2), p 140–149. https://doi.org/10.1016/j.msea.2009.08.010

    Article  CAS  Google Scholar 

  36. V. Uthaisangsuk, U. Prahl and W. Bleck, Modelling of Damage and Failure in Multiphase High Strength DP and TRIP Steels, Eng. Fracture Mech., 2011, 78(3), p 469–486. https://doi.org/10.1016/j.engfracmech.2010.08.017

    Article  Google Scholar 

  37. A. Ramazani, Z. Ebrahimi and U. Prahl, Study the Effect of Martensite Banding on the Failure Initiation in Dual-Phase Steel, Computat. Mater. Sci., 2014, 87, p 241–247. https://doi.org/10.1016/j.commatsci.2014.01.051

    Article  CAS  Google Scholar 

  38. M. Taraf, E.H. Zahaf, O. Oussouaddi and A. Zeghloul, Numerical Analysis for Predicting the Rolling Contact Fatigue Crack Initiation in a Railway Wheel Steel, Tribol. Inter., 2010, 43(3), p 585–593. https://doi.org/10.1016/j.triboint.2009.09.007

    Article  CAS  Google Scholar 

  39. Y. Prawoto, M. Fanone, S. Shahedi, M.S. Ismail and W.B. Wan Nik, Computational Approach Using Johnson–Cook Model on Dual Phase Steel, Comput. Mater. Sci., 2012, 54, p 48–55. https://doi.org/10.1016/j.commatsci.2011.10.021

    Article  CAS  Google Scholar 

  40. Dagang Wang, Dekun Zhang and Shirong Ge, Finite Element Analysis of Fretting Fatigue Behavior of Steel Wires and Crack Initiation Characteristics, Eng. Failure Anal., 2013, 28, p 47–62. https://doi.org/10.1016/j.engfailanal.2012.09.007

    Article  CAS  Google Scholar 

  41. Saroj Kumar Basantia, Ankita Bhattacharya, Niloy Khutia and Debdulal Das, Plastic Behavior of Ferrite–Pearlite, Ferrite–Bainite and Ferrite–Martensite Steels: Experiments and Micromechanical Modelling, Metals Mater. Inter., 2019, 27(5), p 1025–1043. https://doi.org/10.1007/s12540-019-00519-5

    Article  CAS  Google Scholar 

  42. M.J. Hadianfard, Low Cycle Fatigue Behavior and Failure Mechanism of a Dual-Phase Steel, Mater. Sci. Eng.: A, 2009, 499(1–2), p 493–499. https://doi.org/10.1016/j.msea.2008.09.011

    Article  CAS  Google Scholar 

  43. H.S. Ho, W.L. Zhou, Y. Li, K.K. Liu and E. Zhang, Low-Cycle Fatigue Behavior of Austenitic Stainless Steels with Gradient Structured Surface Layer, Inter. J. Fatigue, 2020, 134, p 105481. https://doi.org/10.1016/j.ijfatigue.2020.105481

    Article  CAS  Google Scholar 

  44. V.S. Srinivasan, R. Sandhya, M. Valsan, K.B.S. Rao, and S.L. Mannan, Comparative Evaluation of Strain Controlled Low Cycle Fatigue Behaviour of Solution Annealed and Prior Cold Worked 316L (N) Stainless Steel, Int. J. Fatigue, Elsevier, 2004, 26(12), p 1295–1302.

  45. S.A.A. Shams, G. Jang, J.W. Won, J.W. Bae, H. Jin, H.S. Kim and C.S. Lee, Low-Cycle Fatigue Properties of CoCrFeMnNi High-Entropy Alloy Compared with Its Conventional Counterparts, Mater. Sci. Eng.: A, 2020, 792, p 139661. https://doi.org/10.1016/j.msea.2020.139661

    Article  CAS  Google Scholar 

  46. P.K. Chiu, K.L. Weng, S.H. Wang, J.R. Yang, Y.S. Huang and Jason Fang, Low-Cycle Fatigue-Induced Martensitic Transformation in SAF 2205 Duplex Stainless Steel, Mater. Sci. Eng: A, 2005, 398(1–2), p 349–359. https://doi.org/10.1016/j.msea.2005.03.096

    Article  CAS  Google Scholar 

  47. N. Khutia, P.P. Dey, S. Sivaprasad and S. Tarafder, Development of New Cyclic Plasticity Model for 304LN Stainless Steel through Simulation and Experimental Investigation, Mech. Mater., 2014, 78, p 85–101. https://doi.org/10.1016/j.mechmat.2014.07.019

    Article  Google Scholar 

  48. M. Kobayashi and N. Ohno, Implementation of Cyclic Plasticity Models Based on a General Form a Kinematic Hardening, Int. J. Numer. Methods Eng., 2002, 53(9), p 2217–2238.

    Article  Google Scholar 

  49. S. Bari and T. Hassan, Anatomy of Coupled Constitutive Models for Ratcheting Simulation, Int. J. Plast., 2000, 16, p 381–409.

    Article  CAS  Google Scholar 

  50. S. Hartmann and P. Haupt, Stress Smoponent and Constituent Operator Using Nao-Linear Kinematic Hardening Models, Internaional J. Numer. methods Eng., 1993, 36, p 3801–3814.

    Article  Google Scholar 

  51. K. Perzyński, A. Wrożyna, R. Kuziak, A. Legwand and L. Madej, Development and Validation of Multi Scale Failure Model for Dual Phase Steels, Finite Elements in Analysis and Design, 2017, 124, p 7–21. https://doi.org/10.1016/j.finel.2016.10.001

    Article  Google Scholar 

  52. P. Zhao, L. Tian-Yang, J.-G. Gong, F.-Z. Xuan and F. Berto, A Strain Energy Density Based Life Prediction Model for Notched Components in Low Cycle Fatigue Regime, Inter. J. Pressure Vessels Piping, 2021, 193, p 104458. https://doi.org/10.1016/j.ijpvp.2021.104458

    Article  CAS  Google Scholar 

  53. H. Jahed, A. Varvani-Farahani, M. Noban, and I. Khalaji, An Energy-Based Fatigue Life Assessment Model for Various Metallic Materials under Proportional and Non-Proportional Loading Conditions, Int. J. Fatigue, Elsevier, 2007, 29(4), p 647–655.

  54. Yun-rong Luo, Chong-xiang Huang, Yi. Guo and Qing-yuan Wang, Energy-Based Prediction of Low Cycle Fatigue Life High-Strength Structural Steel, J. Iron and Steel Res. Inter., 2012, 19(10), p 47–53. https://doi.org/10.1016/S1006-706X(12)60151-4

    Article  CAS  Google Scholar 

  55. S.C. Roy, S. Goyal, R. Sandhya, and S.K. Ray, Low Cycle Fatigue Life Prediction of 316 L (N) Stainless Steel Based on Cyclic Elasto-Plastic Response, Nucl. Eng. Des., Elsevier, 2012, 253, p 219–225.

  56. G.R. Ahmadzadeh and A. Varvani-Farahani, Energy-Based Damage Descriptions to Assess Fatigue Life of Steel Samples Undergoing Various Multiaxial Loading Spectra, Int. J. Damage Mech., 2019, 28(1), p 35–57.

    Article  CAS  Google Scholar 

  57. Md Abu Bakkar, Rajib Saha and Debdulal Das, Low Cycle Fatigue Performance and Failure Analysis of Reinforcing Bar, Metals and Materials International, 2021, 27(12), p 4952–4966. https://doi.org/10.1007/s12540-020-00839-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The assistance received from the Center of Excellence, TEQIP-II, IIEST Shibpur to carry out a part of this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basantia, S.K., Bakkar, M.A., Bhattacharya, A. et al. Predicting Macro- and Microscopic Responses of Dual-Phase Steels under Low Cycle Fatigue Based on Multi-scale Finite Element Methods. J. of Materi Eng and Perform 32, 3298–3321 (2023). https://doi.org/10.1007/s11665-022-07298-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07298-y

Keywords

Navigation