Skip to main content
Log in

Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.G. Conley and H.L. Marcus, J. Manuf. Sci. Eng. 1997, vol. 119, pp. 811-816.

    Article  Google Scholar 

  2. D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Int. Mater. Rev. 2012, vol. 57, pp. 133-164.

    Article  Google Scholar 

  3. N. Guo and M.C. Leu, Front. Mech. Eng. 2013, vol. 8, pp. 215-243.

    Article  Google Scholar 

  4. V. Shankar, K.B.S. Rao and S.L. Mannan, J. Nucl. Mater. 2001, vol. 288, pp. 222-232.

    Article  Google Scholar 

  5. G. Lütjering, Mat. Sci. Eng. A 1998, vol. 243, pp. 32-45.

    Article  Google Scholar 

  6. B. Dutta and F.H. Froes, Adv. Mater. Processes 2014, vol. 172, pp. 18-23.

    Google Scholar 

  7. B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder and Fasm, Adv. Mater. Processes 2011, vol. 169, pp. 33-36.

    Google Scholar 

  8. W.E. Frazier, J. Mater. Eng. Perform. 2014, vol. 23, pp. 1917-1928.

    Article  Google Scholar 

  9. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 2016, vol. 46, pp. 151-186.

    Article  Google Scholar 

  10. G.P. Dinda, A.K. Dasgupta and J. Mazumder, Mat. Sci. Eng. A 2009, vol. 509, pp. 98-104.

    Article  Google Scholar 

  11. S.M. Kelly and S.L. Kampe, Metall. Mater. Trans. A 2004, vol. 35A, pp. 1861-1867.

    Article  Google Scholar 

  12. V. Manvatkar, A. De and T. Debroy, J. Appl. Phys. 2014, vol. 116., p. 124905

    Article  Google Scholar 

  13. P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Tech. 2003, vol. 135, pp. 330-339.

    Article  Google Scholar 

  14. A.H. Nickel, D.M. Barnett and F.B. Prinz, Mat. Sci. Eng. A 2001, vol. 317, pp. 59-64.

    Article  Google Scholar 

  15. L. Costa, R. Vilar, T. Reti and A.M. Deus, Acta Mater. 2005, vol. 53, pp. 3987-3999.

    Article  Google Scholar 

  16. P.A. Kobryn and S.L. Semiatin: Laser forming of Ti–6Al–4V: Research overview, Solid Freeform Fabrication Proceedings, University of Texas, Austin, TX, 2000, pp. 58–65.

  17. A.R. Nassar, J.S. Keist, E.W. Reutzel and T.J. Spurgeon, Additive Manufacturing 2015, vol. 6, pp. 39-52.

    Article  Google Scholar 

  18. J.R. Fessler, R. Merz, A.H. Nickel, F.B. Prinz and L.E. Weiss: Solid Freeform Fabrication Symposium, 1996, pp. 117–24.

  19. E.R. Denlinger, J.C. Heigel, P. Michaleris and T.A. Palmer, J. Mater. Process. Tech. 2015, vol. 215, pp. 123-131.

    Article  Google Scholar 

  20. Z.Q. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma and A.M. Beese, Mater. Design 2017, vol. 113, pp. 169-177.

    Article  Google Scholar 

  21. C.C. Silva, H.C. de Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso and A.J. Ramirez, J. Mat. Res. Tech. 2013, vol. 2, pp. 228-237.

    Article  Google Scholar 

  22. J.N. DuPont, Metall. Mater. Trans. A 1996, vol. 27, pp. 3612-3620.

    Article  Google Scholar 

  23. J. Tinoco and H. Fredriksson, High Temp. Mater. Processes 2004, vol. 23, pp. 13-24.

    Article  Google Scholar 

  24. S. Roy, R. Madhavan and S. Suwas, Philos. Mag. 2014, vol. 94, pp. 358-380.

    Article  Google Scholar 

  25. S. Kelly, S. Kampe and C. Crowe: in Microstructural Study of Laser Formed Ti-6Al-4V, MRS Proceedings, Cambridge University Press, 2000, p. 3.

  26. P.Q. Xu, L.J. Li and C.B. Zhang, Mater. Charact. 2014, vol. 87, pp. 179-185.

    Article  Google Scholar 

  27. G. Tapia and A. Elwany: J. Manuf. Sci. Eng. 2014, vol. 136.

  28. M. Cieslak, T. Headley, A. Romig and T. Kollie, Metallurgical Transactions A 1988, vol. 19, pp. 2319-2331.

    Article  Google Scholar 

  29. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ and H.L. Fraser, Mat. Sci. Eng. A 2004, vol. 372, pp. 191-198.

    Article  Google Scholar 

  30. H.J.G. Gundersen, T.B. Jensen and R. Osterby, J. Microsc. 1978, vol. 113, pp. 27-43.

    Article  Google Scholar 

  31. J.S. Keist and T.A. Palmer, Mater. Design 2016, vol. 106, pp. 482-494.

    Article  Google Scholar 

  32. ASTM standard E112-12: Standard test methods for determining average grain size, ASTM International, West Conshohocken, PA, 2012, p. 27.

  33. ASTM standard E8-08: Standard test methods for tension testing of metallic materials, ASTM International, West Conshohocken, PA, 2008.

  34. Z.Q. Wang, T.A. Palmer and A.M. Beese, Acta Mater. 2016, vol. 110, pp. 226-235.

    Article  Google Scholar 

  35. B.E. Carroll, T.A. Palmer and A.M. Beese, Acta Mater. 2015, vol. 87, pp. 309-320.

    Article  Google Scholar 

  36. J.C. Heigel, P. Michaleris and T.A. Palmer: Proc. IMechE Part B: J. Engineering Manufacture. 2016. vol. 230. pp. 1295–1308.

  37. M.F. Gouge, J.C. Heigel, P. Michaleris and T.A. Palmer, Int. J. Adv. Manuf. Tech. 2015, vol. 79, pp. 307-320.

    Article  Google Scholar 

Download references

Acknowledgments

The material is based upon work supported by the Office of Naval Research through the Naval Sea Systems Command under Contract No. N00024-02-D-6604 Delivery order No. 0611, and Contract No. N00024-12-D-6404 Delivery order No. 0001. Special thanks to Dr. William Frazier, Dr. Madan Kittur, Ms. Malinda Pagett, Mr. Anthony Zaita, and Dr. Edward Reutzel for their helpful discussions and recommendations. We also acknowledge Mr. Jay Tressler and Mr. Griffin Jones for fabrication of the wall structures, Ms. Beth Carroll for assistance with initial tensile tests, Mr. Ed Good for use of his metallurgical laboratory, and Dr. Abdalla Nassar for developing the code for measuring microstructural features.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Keist.

Additional information

Manuscript submitted January 24, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foster, B.K., Beese, A.M., Keist, J.S. et al. Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys. Metall Mater Trans A 48, 4411–4422 (2017). https://doi.org/10.1007/s11661-017-4164-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4164-0

Navigation