Skip to main content
Log in

Mechanism of Martensitic to Equiaxed Microstructure Evolution during Hot Deformation of a Near-Alpha Ti Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, mechanisms of microstructural evolution during hot deformation of Ti-1100 were investigated by EBSD analysis. Misorientation angle distribution of initial microstructure showed that diffusionless martensitic phase transformation in Ti-1100 obeys Burgers orientation relationship, and most of the high-angle-grain boundaries consist of angles of 60 and 63 deg. Calculated activation energy of hot deformation (~338 kJ/mol) and EBSD grain boundary maps revealed that continuous dynamic recrystallization (CDRX) is the dominant mechanism during hot compression at 1073 K (800 °C) and strain rate of 0.005 s−1. At a temperature range of 1073 K to 1173 K (800 °C to 900 °C), not only the array of variants lying perpendicular to compression axis but also CDRX contributes to flow softening. Increasing the rolling temperature from 1123 K to 1273 K (850 °C to 1000 °C) brought about changes in spheroidization mechanism from CDRX to conventional boundary splitting and termination migration correlated with the higher volume fraction of beta phase at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] J. C. Williams and E. A. Starke: Acta Mater., 2003, vol. 51, pp. 5775–99.

    Article  Google Scholar 

  2. [2] P Vo, M Jahazi, and S Yue: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2965–80.

    Article  Google Scholar 

  3. [3] J B Newkirk and A H Geisler: Acta Metall., 1953, vol. 1, pp. 370–74.

    Article  Google Scholar 

  4. C.H. Park, J.-W. Park, J.-T. Yeom, Y.S. Chun, C. S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4914–19.

    Article  Google Scholar 

  5. C.H. Park, B. Lee, S. L. Semiatin, and C.S. Lee: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5203–11.

    Article  Google Scholar 

  6. H. Margolin and Cohen, P.: in Titan. ’80 Sci. Technol., H. Kimura and O. Izumi, eds., TMS, Warrendale, PA, 1980, pp. 2991–97.

  7. [7] I. Weiss, F. H. Froes, D. Eylon, and G. E. Welsch: Metall. Trans. A, 1986, vol. 17, pp. 1935–47.

    Article  Google Scholar 

  8. [8] S. L. Semiatin, V. Seetharaman, and I. Weiss: Mater. Sci. Eng. A, 1999, vol. 263, pp. 257–71.

    Article  Google Scholar 

  9. [9] N. Stefansson and S. L. Semiatin: Metall. Mater. Trans. A, 2003, vol. 34, pp. 691–98.

    Article  Google Scholar 

  10. [10] S. L. Semiatin, N. Stefansson, and R. D. Doherty: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1372–76.

    Article  Google Scholar 

  11. [11] I. Balasundar, T. Raghu, and B. P. Kashyap: Int. J. Mater. Form., 2015, vol. 8, pp. 85–97.

    Article  Google Scholar 

  12. CH Park, JW Won, J-W Park, S. L. Semiatin, and CS Lee: Metall. Mater. Trans. A, 2012, vol. 43, pp. 977–85.

    Article  Google Scholar 

  13. [13] D He, J C Zhu, Z H Lai, Y Liu, and X W Yang: Mater. Des., 2013, vol. 46, pp. 38–48.

    Article  Google Scholar 

  14. [14] S. Zherebtsov, M. Murzinova, G. A. Salishchev, and S. L. Semiatin: Acta Mater., 2011, vol. 59, pp. 4138–50.

    Article  Google Scholar 

  15. H Matsumoto, L Bin, S-H Lee, Y Li, and Y Ono: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3245–60.

    Article  Google Scholar 

  16. CH Park, JH Kim, J-T Yeom, C-S Oh, S. L. Semiatin, and CS Lee: Scr. Mater., 2013, vol. 68, pp. 996–99.

    Article  Google Scholar 

  17. [17] Qi Chao, Peter D. Hodgson, and Hossein Beladi: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2659–71.

    Article  Google Scholar 

  18. [18] E. B. Shell and S. L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30, pp. 3219–29.

    Article  Google Scholar 

  19. [19] P. J. Bania: JOM, 1988, vol. 40, pp. 20–22.

    Article  Google Scholar 

  20. [20] T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, and Y. V. R. K. Prasad: Mater. Sci. Eng. A, 2002, vol. 325, pp. 112–25.

    Article  Google Scholar 

  21. [21] N. Stefansson, S. L. Semiatin, and D. Eylon: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3527–34.

    Article  Google Scholar 

  22. [22] S. C. Wang, M. Aindow, and M. J. Starink: Acta Mater., 2003, vol. 51, pp. 2485–2503.

    Article  Google Scholar 

  23. [23] Hossein Beladi, Qi Chao, and Gregory S. Rohrer: Acta Mater., 2014, vol. 80, pp. 478–89.

    Article  Google Scholar 

  24. [24] N. Gey and M. Humbert: Acta Mater., 2002, vol. 50, pp. 277–87.

    Article  Google Scholar 

  25. [25] P Dadras and JF Thomas: Metall. Trans. A, 1981, vol. 12, pp. 1867–76.

    Article  Google Scholar 

  26. [26] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara, and S. Yue: Mater. Sci. Eng. A, 2014, vol. 615, pp. 497–510.

    Article  Google Scholar 

  27. [27] R. L. Goetz and S. L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17.

    Article  Google Scholar 

  28. CH Park, K-T Park, DH Shin, and CS Lee: Mater. Trans., 2008, vol. 49, pp. 2196–2200.

    Article  Google Scholar 

  29. [29] F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Second, Elsevier Ltd, Oxford, 2004.

    Google Scholar 

  30. MA Shafaat, H Omidvar, and B Fallah: Mater. Des., 2011, vol. 32, pp. 4689–95.

    Article  Google Scholar 

  31. [31] R. M. Miller, T. R. Bieler, and S. L. Semiatin: Scr. Mater., 1999, vol. 40, pp. 1387–93.

    Article  Google Scholar 

  32. CH Park, JH Kim, Y-T Hyun, J-T Yeom, and N.S. Reddy: J. Alloys Compd., 2014, vol. 582, pp. 126–29.

    Article  Google Scholar 

  33. [33] S. L. Semiatin and MW Corbett: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1125–36.

    Article  Google Scholar 

  34. [34] Binguo Fu, Hongwei Wang, Chunming Zou, and Zunjie Wei: Mater. Charact., 2015, vol. 99, pp. 17–24.

    Article  Google Scholar 

  35. [35] G. Lütjering and J. C. Williams: Titanium, second, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

    Google Scholar 

  36. [36] S. L. Semiatin, K. A. Lark, D. R. Barker, V. Seetharaman, and B. Marquardt: Metall. Trans. A, 1992, vol. 23, pp. 295–305.

    Article  Google Scholar 

  37. A Hajari, M Morakabati, SM Abbasi, and H Badri: Mater. Sci. Eng. A, 2017, vol. 681, pp. 103–13.

    Article  Google Scholar 

  38. [38] E Farabi, A Zarei-hanzaki, M H Pishbin, and M Moallemi: Mater. Sci. Eng. A, 2015, vol. 641, pp. 360–68.

    Article  Google Scholar 

  39. M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens: Titanium and Titanium Alloys, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2003.

Download references

Acknowledgments

The work has been based on a project proposed by the School of Metallurgy and Materials Engineering of the Iran University of Science and Technology as the Ph.D. thesis of Seyed Amir Arsalan Shams, who was granted permission to perform his experiments at the facilities and under co-supervision of Professor Chong Soo Lee at the Graduate Institute of Ferrous Technology (GIFT), POSTECH, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Additional information

Manuscript submitted July 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, S.A.A., Mirdamadi, S., Abbasi, S.M. et al. Mechanism of Martensitic to Equiaxed Microstructure Evolution during Hot Deformation of a Near-Alpha Ti Alloy. Metall Mater Trans A 48, 2979–2992 (2017). https://doi.org/10.1007/s11661-017-4065-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4065-2

Keywords

Navigation