Skip to main content

Advertisement

Log in

Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn-xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa (x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Farb, Circulation 2002, vol. 105, pp. 2974–80.

    Article  Google Scholar 

  2. S. Cook, P. Wenaweser, M. Togni, M. Billinger, C. Morger, C. Seiler, R. Vogel, O. Hess, B. Meier and S. Windecker, Circulation 2007, vol. 115, pp. 2426–34.

    Article  Google Scholar 

  3. A. Colombo and E. Karvouni, Circulation 2000, vol. 102, pp. 371–73.

    Article  Google Scholar 

  4. P. Erne, M. Schier and T. J. Resink, Cardiovasc Intervent Radiol 2006, vol. 29, pp. 11–6

    Article  Google Scholar 

  5. M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer and G. Hausdorf, Heart 2001, vol. 86, pp. 563–69

    Article  Google Scholar 

  6. Waksman, R.O.N., Pakala, R., Baffour, R., Seabron, R., Hellinga, D. and Tio, F.O, J Interv Cardiol 2008, vol. 21, pp. 15–20

    Article  Google Scholar 

  7. P. K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory Ii, F. Zhao, J. Goldman and J. Drelich, Adv. Healthc. Mater. 2016, vol. 05 pp. 1121–40.

    Article  Google Scholar 

  8. S. Nishio, K. Kosuga, K. Igaki, M. Okada, E. Kyo, T. Tsuji, E. Takeuchi, Y. Inuzuka, S. Takeda, T. Hata, Y. Takeuchi, Y. Kawada, T. Harita, J. Seki, S. Akamatsu, S. Hasegawa, N. Bruining, S. Brugaletta, S. de Winter, T. Muramatsu, Y. Onuma, P.W. Serruys, S. Ikeguchi, Circulation 2012, vol. 125, pp. 2343–53

    Article  Google Scholar 

  9. M. Moravej, F. Prima, M. Fiset and D. Mantovani, Acta Biomaterialia 2010, vol. 6, pp. 1726–35

    Article  Google Scholar 

  10. M. Moravej H. Hermawan, D. Dubé, M. Fiset, D. Mantovani, Advanced Materials Research 2006, vol. 15–17, pp. 113–18.

    Google Scholar 

  11. Lei Yang and Erlin Zhang, Mater. Sci. Eng. C 2009, vol. 29, pp. 1691–96.

    Article  Google Scholar 

  12. R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K.H. Waldmann, A. Haverich, Catheter Cardiovasc Interv. 2006, vol. 68, pp. 607–17

    Article  Google Scholar 

  13. Haim Tapiero and Kenneth D. Tew, Biomed. Pharmacother. 2003, vol. 57, pp. 399–411.

    Article  Google Scholar 

  14. P. K. Bowen, J. Drelich and J. Goldman, Adv Mater 2013, vol. 25, pp. 2577–82.

    Article  Google Scholar 

  15. R. J. Werkhoven, W. H. Sillekens and J. B. J. M. van Lieshout, In Magnesium Technology 2011, John Wiley & Sons, Inc., New York, 2011, pp 419–24.

    Google Scholar 

  16. D. Vojtech, J. Kubasek, J. Serak and P. Novak, Acta Biomater 2011, vol. 7, pp. 3515–22

    Article  Google Scholar 

  17. J.-M. Seitz, M. Durisin, J. Goldman, and J.W. Drelich, Adv. Health. Mater. 2015, vol. 4, pp. 1915-36.

    Article  Google Scholar 

  18. Zhang, X., Yuan, G., Wang, Z., Mater. Lett. 2012, vol. 74, pp. 128–31

    Article  Google Scholar 

  19. Feng Kang, Jin Qiang Liu, Jing Tao Wang and Xiang Zhao, Adv. Eng. Mater. 2010, vol. 12, pp. 730–34.

    Article  Google Scholar 

  20. A.D. Pelton, Journal of Phase Equilibria 1991, vol. 12, pp. 42–45.

    Article  Google Scholar 

  21. G. N. Schrauzer, J Am Coll Nutr 2002, vol. 21, pp. 14–21

    Article  Google Scholar 

  22. Food and Nutrition Board Institute of Medicine, Washington, DC: National Academy Press 2001.

  23. Liping Xu, Guoning Yu, Erlin Zhang, Feng Pan and Ke Yang, J. Biomed. Mater. Res., Part A 2007, vol. 83A, pp. 703–11.

    Article  Google Scholar 

  24. F. Witte, I. Abeln, E. Switzer, V. Kaese, A. Meyer-Lindenberg and H. Windhagen, J Biomed Mater Res A 2008, vol. 86, pp. 1041–47.

    Article  Google Scholar 

  25. M. Thomann, Ch Krause, D. Bormann, N. von der Höh, H. Windhagen and A. Meyer-Lindenberg, Materialwissenschaft und Werkstofftechnik 2009, vol. 40, pp. 82–87

    Article  Google Scholar 

  26. F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath and F. Beckmann, Acta Biomater 2010, vol. 6, pp. 1792–99.

    Article  Google Scholar 

  27. Nina von der Höh Annett Krause, Dirk Bormann, Christian Krause, Friedrich-Willhelm Bach, Henning Windhagen, Andrea Meyer-Lindenberg, J. Mater. Sci. 2010, vol. 45, pp. 624–32.

    Article  Google Scholar 

  28. V. Pavlyuk, I. Chumak, L. Akselrud, S. Lidin and H. Ehrenberg, Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014, vol. 70(Pt 2), pp. 212–17.

    Article  Google Scholar 

  29. Jiqiang Wang, Paul King and R. A. Huggins, Solid State Ionics 1986, vol. 20, pp. 185–89.

    Article  Google Scholar 

  30. Marie-Pierre Bichat, Jean-Louis Pascal, Frédéric Gillot and Frédéric Favier, Chem. Mater. 2005, vol. 17, pp. 6761–71.

    Article  Google Scholar 

  31. E. Zintl and A. Schneider, Z. Elektrochem. Angew. Phys. Chem. 1935, vol. 41, pp. 764–67

    Google Scholar 

  32. H. Schönemann and H.-U. Schuster, Rev. Chim. Miner. 1976, vol. 13, pp. 32–40.

    Google Scholar 

  33. V. Pavlyuk, I. Chumak and H. Ehrenberg, Acta Crystallogr. Sect. B 2012, vol. 68, pp. 34–39.

    Article  Google Scholar 

  34. T. Kokubo, S. Kushitani H Fau - Sakka, T. Sakka S Fau - Kitsugi, T. Kitsugi T Fau - Yamamuro and T. Yamamuro, J Biomed Mater Res. 1990, vol. 24, pp. 721–34.

    Article  Google Scholar 

  35. Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM G31-72, (ASTM International: West Conshohocken, PA, 2004).

  36. Q Wang, L.L Tan, W.L. Xu, B.C. Zhang and K. Yang, Mater. Sci. Eng. B 2011, vol. 176, pp. 1718–26.

    Article  Google Scholar 

  37. Frank Witte, Jens Fischer, Jens Nellesen, Horst-Artur Crostack, Volker Kaese, Alexander Pisch, Felix Beckmann and Henning Windhagen, Biomaterials 2006, vol. 27, pp. 1013–18.

    Article  Google Scholar 

  38. L. Yang and E.L. Zhang, Mater. Sci. Eng. C 2009, vol. 29, pp. 1691–1696.

    Article  Google Scholar 

  39. J. A. Helson and H. J. Breme: Metals as Biomaterials. Wiley, New York, 1998, pp 101–51

  40. M. A. Khan, R. L. Williams and D. F. Williams, Biomaterials. 1999, vol. 20, pp. 631–37.

    Article  Google Scholar 

  41. Pascal J L Bichat M P, Gillot F, Favier F. , Chem. Mater. 2005, vol. 17, pp. 6761-6771.

    Article  Google Scholar 

  42. Denny A. Jones, Principles and prevention of corrosion (2nd Edition) 1996.

  43. P. K. Bowen, J. Drelich and J. Goldman, Acta Biomater. 2014, vol. 10, pp. 1475–83.

    Article  Google Scholar 

Download references

Acknowledgments

U.S. National Institute of Health—National Heart, Lung, and Blood Institute (Grant #1R15HL129199-01) and U.S. National Institute of Health—National Institute of Biomedical Imaging and Bioengineering (Grant #5R21 EB 019118-02) are acknowledged for funding this work. The authors thank Paul Fraley for tensile testing. The authors also thank the staff of the Applied Chemical and Morphological Analysis Laboratory for assisting with the sample preparation for electron imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw W. Drelich.

Additional information

Manuscript submitted June 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., McNamara, C.T., Bowen, P.K. et al. Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling. Metall Mater Trans A 48, 1204–1215 (2017). https://doi.org/10.1007/s11661-016-3901-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3901-0

Keywords

Navigation