Skip to main content

Advertisement

Log in

Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.Q. Han, Z. Lee, D. Witkin, S. Nutt, and E.J. Lavernia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 957–65.

    Article  Google Scholar 

  2. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Shoenung: Acta Mater., 2014, vol. 62, pp. 141–55.

    Article  Google Scholar 

  3. J.B. Ferguson, M. Tabandeh-Khorshid, P.K. Rohatgi, K. Cho, and C.-S. Kim, Scripta Mater., 2014, vol. 72–73, pp. 13–16.

    Article  Google Scholar 

  4. E.J. Lavernia, B.Q. Han, and J.M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–14.

    Article  Google Scholar 

  5. J. Ye, L. Ajdelsztajn, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2569–79.

    Article  Google Scholar 

  6. Y. Xiong, D. Liu, Y. Li, B. Zheng, C. Haines, J. Paras, D. Martin, D. Kapoor, E.J. Lavernia, and J.M. Schoenung: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 327–39.

    Article  Google Scholar 

  7. J. Kumar Rana, D. Sivaprahasam, K. Seetharama Raju, and V. Subramanya Sarma: Mater. Sci. Eng. A, 2009, vol. 527, pp. 292–96.

    Article  Google Scholar 

  8. T.T. Sasaki, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3529–38.

    Article  Google Scholar 

  9. J.R. Groza and A. Zavaliangos: Mater. Sci. Eng. A, 2000, vol. 287, pp. 171–77.

    Article  Google Scholar 

  10. R. Orru, R. Licheri, A. Mario Locci, A. Cincotti, and G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127–87.

    Article  Google Scholar 

  11. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann: Adv. Eng. Mater., 2014, vol. 16, pp. 830–49.

    Article  Google Scholar 

  12. J.R. Groza and A. Zavaliangos: Rev. Adv. Mater. Sci., 2003, vol. 5, pp. 24–33.

    Google Scholar 

  13. A. Zavaliangos, J. Zhang, M. Krammer, and J.R. Groza: Mater. Sci. Eng A., 2004, vol. 379, pp. 218–28.

    Article  Google Scholar 

  14. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest: Acta Mater., 2005, vol. 53, pp. 4379–88.

    Article  Google Scholar 

  15. B. McWilliams and A. Zavaliangos, J. Mater. Sci., 2008, vol. 43, pp. 5031–35.

    Article  Google Scholar 

  16. J. Milligan, P. Hendrickx, M.M. Tuncay, E.A. Olevsky, and M. Brochu: Scripta Mater., 2014, vol. 76, pp. 53–56.

    Article  Google Scholar 

  17. B. McWilliams, J. Yu, and A. Zavaliangos: J. Mater. Sci., 2015, vol. 50, pp. 519–30.

    Article  Google Scholar 

  18. E. Olevsky, I. Bogachev, and A. Maximenko: Scripta Mater., 2013, vol. 69, pp. 112–16.

    Article  Google Scholar 

  19. N. Chawake, L.D. Pinto, A.K. Srivastav, K. Akkiraju, B.S. Murty, and R. Sankar Kottada: Scripta Mater., 2014, vol. 93, pp. 52–55.

    Article  Google Scholar 

  20. Z. Song, X. Liu, and J. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494–500.

    Article  Google Scholar 

  21. W. Li, E. Olevsky, J. McKittrick, A.L. Maximenko, and R.M. German: J. Mater. Sci., 2012, vol. 47, pp. 7036–46.

    Article  Google Scholar 

  22. S. Diouf and A. Molinari: Powder Technol., 2012, vol. 221, pp. 220–27.

    Article  Google Scholar 

  23. C.S. Bonifacio, T.B. Holland, and K. van Benthem: Acta Mater., 2014, vol. 63, pp. 140–49.

    Article  Google Scholar 

  24. E. Olevsky and L. Froyen, Scripta Mater., 2006, vol. 55, pp. 1175–78.

    Article  Google Scholar 

  25. R. Li, T. Yuan, X. Liu, and K. Zhou: Scripta Mater., 2016, vol. 110, pp. 105–108.

    Article  Google Scholar 

  26. H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287, pp. 276–87.

    Article  Google Scholar 

  27. H.D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H. Nam Han, J. Cao, S.-H. Ahn, and D.-M. Chun: Int. J. Precis. Eng. Manuf. Green Technol., 2015, vol. 2, pp. 365–76.

    Article  Google Scholar 

  28. M. Cologna, B. Rashkova, and R. Raj: J. Am. Ceram. Soc., 2010, vol. 93, pp. 3556–59.

    Article  Google Scholar 

  29. Y. Zhang and J. Luo: Scripta Mater., 2015, vol. 106, pp. 26–29.

    Article  Google Scholar 

  30. P. Wray: Am. Ceram. Soc. Bull., 2013, vol. 92, pp. 28–33.

    Google Scholar 

  31. R. Raj, M. Cologna, and J.S. Francis: J. Am. Ceram. Soc., 2011, vol. 94, pp. 1941–65.

    Article  Google Scholar 

  32. J. Narayan: Scripta Mater., 2013, vol. 69, pp. 107–111.

    Article  Google Scholar 

  33. C. Schmerbauch, J. Gonzalez-Julian, R. Roder, C. Ronning, and O. Guillon: J. Am. Ceram. Soc., 2014, vol. 97, pp. 1–8.

    Article  Google Scholar 

  34. R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, and P.R. Wilshaw: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1865–77.

    Article  Google Scholar 

  35. Y. Dong and I.W. Chen: J. Am. Ceram. Soc., 2015, vol. 98, pp. 2333–35.

    Article  Google Scholar 

  36. M. Cologna, J.S.C. Francis, and R. Raj: J. Eur. Ceram. Soc., 2011, vol. 31, pp. 2827–37.

    Article  Google Scholar 

  37. J.M. Lebrun and R. Raj: J. Am. Ceram. Soc., 2014, vol. 97, pp. 2427–30.

    Article  Google Scholar 

  38. R. Muccillo and E.N.S. Muccillo: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1653–56.

    Article  Google Scholar 

  39. S.K. Jha, J.M. Lebrun, K.C. Seymour, W.M. Kriven, and R. Raj: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 257–61.

    Article  Google Scholar 

  40. F. Hardesty, ed., ASM Handbook, Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Metals Park, OH, 1990, pp. 62–122.

  41. O. Engler and S. Miller-Jupp: J. Alloys Compd., 2016, vol. 689, pp. 998–1010.

    Article  Google Scholar 

  42. R.M. German: Sintering Theory and Practice, Wiley, New York, 1996.

    Google Scholar 

  43. G.B. Schaeffer, J.Y. Yao, S.J. Bonner, E. Crossin, S.J. Pas, and A.J. Hill: Acta Mater., 2008, vol. 56, pp. 2615–24.

    Article  Google Scholar 

  44. I. Arribas, J.M. Martin, and F. Castro: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3949–66.

    Article  Google Scholar 

  45. J.M. Montes, F.G. Cuevas, and J. Cintas: Appl. Phys. A, 2008, vol. 92, pp. 375–80.

    Article  Google Scholar 

  46. R. Raj: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 2293–2301.

    Article  Google Scholar 

  47. H.G. Kim, J.W. Lee, and K.T. Kim: Mater. Sci. Eng. A, 2001, vol. 318, pp. 174–82.

    Article  Google Scholar 

  48. J. Zhang and A. Zavaliangos: J. Electron. Mater., 2011, vol. 40, pp. 873–78.

    Article  Google Scholar 

  49. M. Cologna and R. Raj: J. Am. Ceram. Soc., 2011, vol. 94, pp. 391–95.

    Article  Google Scholar 

  50. G.A. Sweet, M. Brochu, R.L. Hexemer Jr., I.W. Donaldson, and D.P. Bishop: Mater. Sci. Eng. A, 2014, vol. 608, pp. 273–82.

    Article  Google Scholar 

  51. Y. Zhang, J.I. Jung, and J. Luo: Acta Mater., 2015, vol. 94, pp. 87–100.

    Article  Google Scholar 

  52. J. Trapp and B. Kieback: J. Am. Ceram. Soc., 2015, vol. 98, pp. 3547–52.

    Article  Google Scholar 

  53. X.P. Li, M. Yan, H. Imai, K. Kondoh, G.B. Schaffer, and M. Qian: J. Noncryst. Solids, 2013, vol. 375, pp. 95–98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon McWilliams.

Additional information

Manuscript submitted May 26 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McWilliams, B., Yu, J., Kellogg, F. et al. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields. Metall Mater Trans A 48, 919–929 (2017). https://doi.org/10.1007/s11661-016-3861-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3861-4

Keywords

Navigation