Skip to main content
Log in

Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. J. Petch: J. Iron. Steel. Inst., 1963, vol. 174, pp. 25-28.

    Google Scholar 

  2. E. O. Hall: Proceedings of the Physical Society, 1951, vol. 643, pp. 747-752.

    Article  Google Scholar 

  3. V. M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157-164.

    Article  Google Scholar 

  4. R. Z. Valiev and T. G. Langdon: Prog. Mater. Sci. 2006, vol. 51, pp. 881-981.

    Article  Google Scholar 

  5. T. G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 3388-3397.

    Article  Google Scholar 

  6. P. R. Cetlin, M. T. P. Aguilar, R. B. Figueiredo and T. G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4561-4570.

    Article  Google Scholar 

  7. O. Nejadseyfi, A. Shokuhfar, A. Azimi and M. Shamsborhan: J. Mater. Sci., 2015, vol. 50, pp. 1513-1522.

    Article  Google Scholar 

  8. R. Y. Lapovok: J. Mater. Sci., 2005, vol. 40, pp. 341-346.

    Article  Google Scholar 

  9. A. P. Zhilyaev and T. G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7888-7893.

    Article  Google Scholar 

  10. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59-67.

    Article  Google Scholar 

  11. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev: Mater. Sci. Eng. A, 2003, vol. 343, pp. 43-50.

    Article  Google Scholar 

  12. H. S. Dong, B. C. Kim, K. T. Park and W. Y. Choo: Acta Mater., 2000, vol. 48, pp.3245-3252.

    Article  Google Scholar 

  13. H. S. Dong, B. C. Kim, Y. S. Kim and K. T. Park: Acta Mater., 2000, vol. 48, pp. 2247-2255.

    Article  Google Scholar 

  14. K. Neishi, Z. Horita and T. G. Langdon: Mater. Sci. Eng. A, 2002, vol. 325, pp. 54-58.

    Article  Google Scholar 

  15. A. P. Zhilyaev, B. K. Kim, J. A. Szpunar, M. D. Baró and T. G. Langdon: Mater. Sci. Eng. A, 2005, vol. 391, pp. 377-389.

    Article  Google Scholar 

  16. Z. Huang, M. Lucas and M.J. Adams: Ultrasonics, 2002, vol. 40, pp. 43-48.

    Article  Google Scholar 

  17. Y. Liu, S. Suslov, Q. Han, L. Hua and C. Xu: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3232-3244.

    Article  Google Scholar 

  18. D. Pal and B. Stucker: J. Appl. Phys., 2013, vol. 113, pp. 203517-203517-8.

    Article  Google Scholar 

  19. J. F. Zhang, F. Z. Xuan and Y. X. Xiang: Epl, 2013, vol. 103, pp. 613-616.

    Google Scholar 

  20. F. Ahmadi, M. Farzin, M. Meratian, S. M. Loeian and M. R. Forouzan: Int. J. Adv. Manuf. Tech., 2015, vol. 79, pp. 503-512.

    Article  Google Scholar 

  21. F. Djavanroodi, H. Ahmadian, K. Koohkan and R. Naseri: Ultrasonics, 2013, vol. 53, pp. 1089–1096.

    Article  Google Scholar 

  22. F. Ahmadi, M. Farzin and M. Mandegari: Ultrasonics, 2015, vol. 63, pp. 111-117.

    Article  Google Scholar 

  23. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T.G. Langdon: Scripta Mater., 1996, vol. 35, pp.143-146.

    Article  Google Scholar 

  24. C. F. Gu and C. H. J. Davies: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1791-1799.

    Article  Google Scholar 

  25. A. Godfrey and Q. Liu: Scripta Mater., 2009, vol. 60, pp. 1050-1055.

    Article  Google Scholar 

  26. X. Molodova, G. Gottstein, M. Winning and R. J. Hellmig: Mater. Sci. Eng. A, 2007, vol.460, pp. 204-213.

    Article  Google Scholar 

  27. N. Lugo, N. Llorca, J.J. Sunol and J.M. Cabrera: J. Mater. Sci., 2010, vol. 45, pp. 2264-2273.

    Article  Google Scholar 

  28. O.F. Higuera-Cobos and J.M. Cabrera: Mater. Sci. Eng. A, 2013, vol. 571, pp. 103-114.

    Article  Google Scholar 

  29. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, 2004.

    Google Scholar 

  30. Y. M. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699-1709.

    Article  Google Scholar 

  31. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205-219.

    Article  Google Scholar 

  32. X. Zhang, L. Hua and Y. Liu: Mater. Sci. Eng. A, 2012, vol. 535, pp. 153-163.

    Article  Google Scholar 

  33. K. M. Youssef, R. O. Scattergood, K. L. Murty, C. C. Koch: Scripta Mater., 2006, vol. 54, pp. 251-256.

    Article  Google Scholar 

  34. H.P. Klug and L. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. Wiley, New York, 1974.

  35. G. K. Williamson and R. E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34-36.

    Article  Google Scholar 

  36. W. G. Cao, C. F. Gu, E. V. Pereloma and C.H.J. Davies: Mater.Sci. Eng. A, 2008, vol. 492, pp. 74–79.

    Article  Google Scholar 

  37. P.K. Jayakumar, K. Balasubramanian and G. Rabindranath Tagore: Mater.Sci.Eng.A, 2012, vol. 538, pp. 7-13.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51575360, No. 51375315 and No. 51405306), Major Science and Technology Project of Guangdong Province (No. 2014B010131006), PhD Start-up Fund of Natural Science Foundation of Guangdong Province (No. 2016A030310036), Science and Technology Project of Shenzhen (No. JSGG20140519104809878), the Science and Technology Project of Nanshan District of Shenzhen (No. KC2014JSJS0008A), the Research and Development Foundation of Science and Technology of Shenzhen (No. JCYJ20140418095735629, No. JCYJ20140418181958498 and No. JCYJ20150525092941026). The authors are also grateful to their colleagues for essential contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Wu.

Additional information

Manuscript submitted January 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, X., Liu, Z. et al. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing. Metall Mater Trans A 47, 4648–4658 (2016). https://doi.org/10.1007/s11661-016-3622-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3622-4

Keywords

Navigation