Skip to main content
Log in

Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys. Part II: Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper describes the tensile properties, flow and work-hardening behavior of four metastable β-titanium alloys Ti-5Al-5Mo-5V-3Cr (A1), Ti-5Al-3.5Mo-7.2V-3Cr (A2), Ti-5Al-5Mo-8.6V-1.5Cr (A3), and Ti-5Al-3.5Mo-5V-3.94Cr (A4) in α+β hot-rolled condition. The decreasing order of average strength parameters (σ YS and σ UTS) is A4, A2, A1, and A3. The maximum strength observed in alloy A4 is due to the presence of highest wt. fraction of Cr. The elongation is the maximum and minimum in alloys A3 and A4, respectively. These alloys display moderate to high percent in-plane anisotropy (A IP) and reasonably low anisotropic index (δ) values. Both the A IP and δ values are maximum and minimum in alloys A1 and A3, respectively. The yield locus plots also exhibit the presence of anisotropy due to relatively large differences in yield strength values along tension and compression directions. The flow behavior of alloys A1, A2, and A4 follows Swift equation, while the alloy A3 displays best fit with Holloman equation. The presence of prestrain (ε 0) in hot-rolled materials before tensile testing has an important bearing on the flow curves of A1, A2, and A4 alloys. The instantaneous work-hardening rate curves of the alloys A1, A2, and A3 exhibit all the three typical stages (stage I, stage II, and stage III) in RD samples, while the alloy A4 shows the presence of only stage I and stage III. The 45 deg to RD and TD samples of alloys A1, A2, and A4 display only stage I. The stages I and III as well as I and II are present in alloy A3 in 45 deg to RD and TD samples, respectively. Dislocation-controlled strain hardening occurs in all the three stages of these alloys in the absence of stress-induced martensitic transformation (α″) and twinning. Slip is the predominant deformation mechanism during tensile testing. Three types of slip lines, i.e., planar, wavy, and intersecting have been observed close to fracture surfaces of post tensile-tested specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. E.W. Collings, Physical Metallurgy of Titanium Alloys, American Society of Metals, OH (1984).

    Google Scholar 

  2. 2. R.R. Boyer and R. D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, pp. 681-85

    Article  Google Scholar 

  3. 3. R.R. Boyer, Beta titanium alloys in the 1990’s. TMS, Warrendale 1993, 335.

    Google Scholar 

  4. J.C. Williams: Titanium: Science and Technology. Plenum Press, New York, pp. 1433-94 (1973).

    Google Scholar 

  5. J.C. Williams: in Titanium and Titanium Alloys, Scientific and Technological Aspects, J.C. Williams and A.F. Belov, eds., Plenum Press, New York, 1982, ISBN 0-306-40191-6, pp. 1477–98.

  6. 6. T.K. Nandy, A. Bhattacharjee, A.K. Singh and A.K. Gogia: Metals Mater. Processes, 2006, vol. 18, pp. 289-308.

    Google Scholar 

  7. 7. N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Mater. Sci. Eng. A, 2008, vol. 490, pp. 369-77.

    Article  Google Scholar 

  8. 8. N.G. Jones, R.J. Dashwood, D. Dye, and M. Jackson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1944-54.

    Article  Google Scholar 

  9. R. Panza-Giosa. Ph.D Thesis, McMaster University, Canada, 2009.

  10. 10. G. Lütjering, J.C. Williams, Titanium, second ed., Springer-Verlag, Berlin, Germany, 2007.

    Google Scholar 

  11. V.V. Tetyukhin: Proceedings of 13th Annual Titanium Conference, ITA, San Francisco CA, 1997.

  12. 12. S. Veeck, D. Lee, R. Boyer and R. Briggs: J. Adv. Mater., 2005, vol. 37, pp. 40-45.

    Google Scholar 

  13. 13. N. Clement, A. Lenain and P.J. Jacques: J. Met., 2007, vol. 59, pp. 50-53.

    Google Scholar 

  14. V.N. Moiseev: in Titanium 95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, Birmingham, 1995, pp. 1387–94.

  15. C. Roubaud, T. Grosdidier, M. Phillippe, and Y. Combres: in Titanium 95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, Birmingham, 1995, pp. 996–1003.

  16. 16. T.W. Duerig, G.T. Terlinde and J.C. Williams: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 1987-98.

    Article  Google Scholar 

  17. T.W. Duerig and J.C. Williams: in Overview: Microstructure and Properties of Beta Titanium Alloys in the 1980’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, New York, 1984.

  18. 18. M. Jackson, R. Dashwood, L. Christodoulou, and H. Flower: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1317-27.

    Article  Google Scholar 

  19. 19. M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood: Mater. Sci. Engg. A, 2009, vol. 501, pp. 248-54.

    Article  Google Scholar 

  20. 20. N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye: Acta Mater., 2009, vol. 57, pp. 3830-39.

    Article  Google Scholar 

  21. 21. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2136-47.

    Article  Google Scholar 

  22. 22. P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya, and F. Le Maitre: J. Mater Proc. Technol., 2009, vol. 209, pp. 2223-30.

    Article  Google Scholar 

  23. J.C. Fanning and R.R. Boyer: in Titanium 2003: Science and Technology, vol. IV, G. Luetjering and J. Albrecht, eds., Wiley-VCH, Hamburg, 2003, pp. 2643–50.

  24. 24. S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee: Mater. Charact., 2013, vol. 81, pp. 37-48.

    Article  Google Scholar 

  25. 25. P. Manda, P. Ghosal, U. Chakkingal, and A.K. Singh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2646-63.

    Article  Google Scholar 

  26. 26. N.G. Jones and M. Jackson: Mater. Sci. Technol, 2011, vol. 27, pp. 1025-32.

    Article  Google Scholar 

  27. J.C. Fanning, S.L. Nyakana, K.M. Patterson, and McDaniel: in Titanium 2007: Science and Technology, vol. I, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, 2007, pp. 499–502.

  28. 28. S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee: Mater. Desi., 2015, vol.66, pp. 596-610.

    Article  Google Scholar 

  29. V. Venkatesh, M. Kamal, and J. Fanning: in Titanium 2007: Science and Technology, vol. I, M. Niinomi, S. Akiyama, M. Hagiwara, M. Ikeda, and K. Maruyama, eds., The Japan Institute of Metals, Kyoto, 2007, pp. 503–06.

  30. 30. R.G. Wheeler, and D.R. Ireland: Electrochem. Technol., 1966, vol. 4, pp. 313–17.

    Google Scholar 

  31. 31. D. Lee and W.A. Backofen: Trans. AIME, 1996, vol. 236, pp. 1696–1704.

    Google Scholar 

  32. 32. D. Lee, J.H. Westbrook, and H. Conrad (Eds.), Science of Hardness Testing and its Research Applications, ASM International, Materials Park Ohio, 1973.

    Google Scholar 

  33. 33. J. H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  34. P. Ludwik: Elements der Technologischen Mechanik. Springer, Leipzig, 1909, p. 32.

    Book  Google Scholar 

  35. 35. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–18.

    Article  Google Scholar 

  36. S.R. Seagle and P.A. Russo: Material Engineering Institute-ASM International Course Material, Course 27, pp. 8–12.

  37. 37. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., Singapore, 1988

    Google Scholar 

  38. A. Bhattacharjee: Ph.D Thesis, Indian Institute of Technology Kanpur, India, 2006.

  39. 39. K.V. Jata, A.K. Hopkins, and R. J. Rioja: Mater. Sci. Forum, 1996, vol. 217-222, pp. 647-52.

    Article  Google Scholar 

  40. 40. S. Banumathy, R.K. Mandal, and A.K. Singh: Int. J. Mat. Res., 2011, vol. 102, pp. 208-17.

    Article  Google Scholar 

  41. 41. Y.T. Wu, and C. H. Koo: Scripta Met., 1998, vol. 38, pp. 267-71.

    Article  Google Scholar 

  42. 42. K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh: Mater. Sci. Engg. A, 2014, vol. 613, pp. 71-81.

    Article  Google Scholar 

  43. 43. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    Google Scholar 

  44. 44. E. Voce: Metallurgia, 1955, vol. 51, pp. 219–26.

    Google Scholar 

  45. A. Bhattacharjee, V.A. Joshi, and A.K. Gogia: in Titanium 1999: Science and Technology, vol. I, I.V. Gorynin and S.S. Ushkov, eds., Saint-Petersburg, Russia, 1999, pp. 529–36.

  46. 46. K.G. Samuel, and P. Rodriguez: J. Mater.Sci. 2005, vol. 40, pp. 5727-31.

    Article  Google Scholar 

  47. 47. D. C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825–28.

    Article  Google Scholar 

  48. 48. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Engg. A, 2013, vol. 577, pp 87-100.

    Article  Google Scholar 

  49. 49. M-H. Cai, C-Y. Lee, and Y-K. Lee: Scripta Mater., 2012, vol. 66, pp. 606-09

    Article  Google Scholar 

  50. 50. X. Min, X. Chen, S. Emura, and K. Tsuchiya: Scripta Mater., 2013, vol. 69, pp. 393-96.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Defence Research and Development Organization for financial support. We are grateful to Director, Defence Metallurgical Research Laboratory for his kind encouragement. Authors thank Electron Microscopy, Titanium Alloy, Metal Working, Mechanical Behaviour Groups of DMRL and AMTL Hyderabad for their kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Manuscript submitted August 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manda, P., Chakkingal, U. & Singh, A.K. Effect of Alloying Elements in Hot-Rolled Metastable β-Titanium Alloys. Part II: Mechanical Properties. Metall Mater Trans A 47, 3447–3463 (2016). https://doi.org/10.1007/s11661-016-3508-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3508-5

Keywords

Navigation