Skip to main content
Log in

Mechanical Behavior and Microstructure Characteristics of Directionally Solidified TWIP Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical behavior and microstructure characteristics of three high Mn austenitic steels prepared by directional solidification at withdrawal rates of 60, 120, and 240 μm s−1 were investigated and compared with common TWIP steel with equiaxed grains. For each steel, the Hollomon analysis, differential C–J analysis, and modified C–J analysis as an alternative method to describe the work-hardening behavior were studied. The directionally solidified samples (DS samples) exhibited higher mechanical properties along the axis, five stages (A, B, C, D, and E) divided on the plot of stain hardening rate vs true strain, and a more stable and uniform deformation feature with larger strain-hardening coefficients when the true strain is over 0.25, in comparison with the common TWIP steel. The modified C–J analysis was found to be the best one for revealing the strain-hardening behavior characterized by several different stages with a definite work-hardening exponent n. In the case of DS samples, the dendrite spacings increase but the morphology becomes simple when decreasing the withdrawal rate. The larger volume fraction of twins and prevalent activation of twin systems, together with the fragmentations of the original grains in a sample solidified at a withdrawal rate of 120 μm s−1, lead to the best mechanical behavior in a medium-to-large strain range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.K. Mishra, S.M. Tiwari, A.M. Kumar, and L.G. Hector Jr.: Metall.Mater. Trans. A, 2012, vol. 43A, pp. 1598-609.

    Article  Google Scholar 

  2. J. Coryell, V. Savic, L. Hector, and S. Mishra: SAE Technical Paper, 2013, 2013-01-0610.

  3. V. Savic, L. Hector, A. Sachdev, H. Ezzat, J. Quinn, R. Krupitzer, and X. Sun: SAE Technical Paper, 2015, 2015-01-0459.

  4. O. Grassel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys., 1997, vol. 7, pp. 383-8.

    Google Scholar 

  5. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer: Int. J. Plastic., 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  6. S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vol. 387, pp. 143-7.

    Article  Google Scholar 

  7. B.X. Huang, X.D. Wang, Y.H. Rong, L. Wang, and L. Jin: Mater. Sci. Eng. A, 2006, vol. 438, pp. 306-11.

    Article  Google Scholar 

  8. J.D. Yoo and K.T. Park: Mater. Sci. Eng. A, 2008, vol. 496, pp. 417-24.

    Article  Google Scholar 

  9. Y.K. Lee: Scripta Mater., 2012, vol. 66, pp. 1002-6.

    Article  Google Scholar 

  10. G. Frommeyer, U. Brux, and P. Neumann: TSIJ Int., 2003, vol. 43, pp. 438-46.

    Google Scholar 

  11. X.D. Wang, B.X. Huang, and Y.H. Rong: Phil. Mag. Lett., 2008, vol. 88, pp. 845-51.

    Article  Google Scholar 

  12. M. Koyama, T. Sawaguchi, and K. Tsuzaki: Phil. Mag. Lett., 2012, vol. 92, pp. 145-52.

    Article  Google Scholar 

  13. K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, and S.H. Park, Int. J. Plastic., 2011, vol. 27, pp. 52-81.

    Article  Google Scholar 

  14. D. Cornette, P. Cugy, A. Hildenbrand, M. Bouzekri, and G. Lovato: Rev. Métall., 2005, vol. 12, pp. 905-18.

    Article  Google Scholar 

  15. C. Scott, N. Guelton, S. Allain, and M. Faral: Rev. Métall – CIT., 2006, vol. 103, p. 293.

  16. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takeinura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963-6.

    Article  Google Scholar 

  17. G. Dini, R. Ueji, A. Najafizadeh, and S.M. Monir-Vaghefi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2759-63.

    Article  Google Scholar 

  18. I. Gutierrez-Urrutia, S. Zaefferer, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3552-60.

    Article  Google Scholar 

  19. X.F. Duan, D. Wang, K. Wang, and F.S. Han: Phil. Mag. Lett., 2013, vol. 93, pp. 316-21.

    Article  Google Scholar 

  20. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196-206.

    Article  Google Scholar 

  21. P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scripta Mater., 2006, vol. 55, pp. 629-31.

    Article  Google Scholar 

  22. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid. State. Mater. Sci., 2011, vol. 15, pp. 141-68.

    Article  Google Scholar 

  23. I. Gutierrez-Urrutia and D. Raabe, Acta. Mater., 2012, vol. 60, pp. 5791-802.

    Article  Google Scholar 

  24. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484-7.

    Article  Google Scholar 

  25. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7, pp. 1897-904.

    Google Scholar 

  26. D. Wang, K. Wang, Z.D. Li, X.F. Wang, X.F. Wang, and F.S. Han: Mater. Sci. Eng. A, 2015, vol. 636, pp. 396-406.

    Article  Google Scholar 

  27. D. Wang, K. Wang, M. Luo, J.Z. Yang, and F.S. Han: Mater. Des., 2015, vol. 66, pp. 627-34.

    Article  Google Scholar 

  28. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques: Scripta Mater., 2010, vol. 63, pp. 961-4.

    Article  Google Scholar 

  29. J. Kim, Y. Estrin, H. Beladi, S. Kim, K. Chin, and B.C. De Cooman: Mater. Sci. Forum, 2010, vol. 270, pp. 654-6.

    Google Scholar 

  30. X. Liang, J.R. McDermid, O. Bouaziz, X. Wang, J.D. Embury, and H.S. Zurob: Acta Mater., 2009, vol. 57, pp. 3978-88.

    Article  Google Scholar 

  31. H. Ding, H. Ding, D. Song, Z.Y. Tang, and P. Yang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 868-73.

    Article  Google Scholar 

  32. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vol. 319, pp. 246-9.

    Article  Google Scholar 

  33. Y. Tomita and K. Okabayashi: Metall. Trans. A, 1985, vol. 16, pp. 865-72.

    Article  Google Scholar 

  34. M.S. Nagorka, G. Krauss, and D.K. Matlock: Mater. Sci. Eng. A, 1987, vol. 94, pp. 183-93.

    Article  Google Scholar 

  35. Z. Jiang, J. Lian, and J. Chen: Mater. Sci. Technol., 1992, vol. 8, pp. 1075-81.

    Article  Google Scholar 

  36. M. Umemoto, Z.G. Liu, S. Sugimoto, and K. Tsuchiya: Metall. Mater. Trans. A, 2000, vol. 31, pp. 1785-94.

    Article  Google Scholar 

  37. V. Colla, M. De Sanctis, A. Dimatteo, G. Lovicu, A. Solina, and R. Valentini: Metall. Mater. Trans A, 2009, vol. 40A, pp. 2557-67.

    Article  Google Scholar 

  38. J.E. Jin and Y.K. Lee: Mater. Sci. Eng. A, 2009, vol. 527, pp. 157-61.

    Article  Google Scholar 

  39. J.E. Jin and Y.K. Lee: Acta Mater., 2012, vol. 60, pp. 1680-8.

    Article  Google Scholar 

  40. H.R. Abedi, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, and A.A. Roostaei: Mater. Des., 2010, vol. 31, pp. 4386-91.

    Article  Google Scholar 

  41. A.R. Khalesian, A. Zarei-Hanzaki, H.R. Abedi, and F. Pilehva: Mater. Sci. Eng. A, 2014, vol. 596, pp. 200-6.

    Article  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by the National Basic Research Program of China under Grant No. 2011CB610300; the National Natural Science Foundation of China under Grant No. 51371167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusheng Han.

Additional information

Manuscript submitted November 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, K., Man, J. et al. Mechanical Behavior and Microstructure Characteristics of Directionally Solidified TWIP Steel. Metall Mater Trans A 47, 3423–3434 (2016). https://doi.org/10.1007/s11661-016-3485-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3485-8

Keywords

Navigation