Skip to main content
Log in

Enhancement of Physical and Mechanical Properties of Oxide Dispersion-Strengthened Tungsten Heavy Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened (ODS) tungsten heavy alloys are well known for their excellent mechanical properties which make them useful for a wide range of high-temperature applications. In this investigation, microstructural, magnetic, and mechanical properties of W-5 wt pct Ni alloys reinforced with 2 wt pct Y2O3, ZrO2 or TiO2 particles were investigated. Cold-pressed samples were sintered under vacuum at 1773 K (1500 °C) for 1 hour. The results show that, among three kinds of oxides, Y2O3 is the most efficient oxide to consolidate W powder by sintering. W-Ni-Y2O3 alloys form relatively uniform interconnected structure and also show higher density and compressive strength than those of W-Ni-ZrO2 and W-Ni-TiO2. On the other hand, W-Ni-TiO2 and W-Ni-ZrO2 alloys have non-homogeneous microstructure due to the formation of Ni globules in some areas in the matrix and almost nickel-free zones in other areas causing the appearance of pores. The Vickers hardness values for W-Ni-TiO2 alloys are slightly higher than those of W-Ni-ZrO2 and Ni-W-Y2O3 due to the smaller particle size of TiO2 than the other oxides. At room temperature, the investigated alloys have very weak magnetic properties. This is due to the combination of the ferromagnetic nickel metal binder with the non-magnetic tungsten forming the weak magnetic W-Ni solid solution. Moreover, the measured (mass) magnetizations had small values of the power of 10−3 emu/g. Additionally, the values of coercivity (H C) and remanence (M r) for the W-Ni-TiO2 alloy were higher than that of the W-Ni-Y2O3 and W-Ni-ZrO2 alloys due to the particle size effect of TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, Y., Hong, M. H., Lee, S. H., Kim, E. P., Lee, S. and Noh, J. W, Metals and Materials International, vol. 12, no. 3, 2006, pp. 245-248.

    Article  Google Scholar 

  2. Henager, C. H., Kurtz, R. J., Roosendaal T. J. and Borlaug, B. A., Fusion Reactor Materials Program, vol. 55, 2013, pp. 29-39.

    Google Scholar 

  3. Velevaa, L., Oksiuta, Z., Vogtb, U. and Baluca, N, usion Engineering and Design, vol. 84, 2009, pp. 1920-1924.

    Article  Google Scholar 

  4. L. Veleva: Contribution to the Production and Characterization of W-Y, W-Y2O3 and W-TiC Materials for Fusion Reactors, Doctor of Philosophy, 2011, pp. 1–164.

  5. Liu, W., Ma, Y. and Zhang, J, Int. Journal of Refractory Metals and Hard Materials, vol. 35, 2012, pp.138–142.

    Article  Google Scholar 

  6. S.H. Islam, F. Akhtar, S.J. Askari, M.T. Jokhio, and X. Qu: NED Univ. J. Res., 2009, vol VI, no. 1

  7. Upadhyaya, A., Tiwari, S.K. and Mishra, P, Scripta Materialia, vol. 56, 2007, pp. 5–8.

    Article  Google Scholar 

  8. Caliskan, N. K., Durlu, N. and Bor S., Int. Journal of Refractory Metals and Hard Materials, vol. 36, 2013, pp.260–264.

    Article  Google Scholar 

  9. Lee, K.H., Cha, S. I., Ryu, H. J. and Hong, S. H., Materials Science and Engineering A, vol. 452–453, 2007, pp. 55–60.

    Article  Google Scholar 

  10. Ogundipe, A., Greenberg, B., Braida, W., Christodoulatos, C. and Dermatas, D., Corrosion Science, vol. 48, 2006, pp. 3281–3297.

    Article  Google Scholar 

  11. Marquis, F.D.S., Mahajan, A. and Mamalis, A.G., Journal of Materials Processing Technology, vol. 161, 2005, pp. 113–120.

    Article  Google Scholar 

  12. K.R. Tarcza: The Dynamic Failure Behavior of Tungsten Heavy Alloys Subjected To Transverse Loads, Doctor of Philosophy, 2004, pp. 1–186.

  13. Wu, Y., German, R. M., Marx, B., Bollina, R. and Bell, M., Materials Science and Engineering A, vol. 344, 2003, pp. 158-167.

    Article  Google Scholar 

  14. Fortuna, E., Zielinski, W., Sikorski, K. and Kurzydlowski, K.J., Materials Chemistry and Physics, vol. 81, 2003, pp. 469–471.

    Article  Google Scholar 

  15. Hong, S. H. and Ryu, H. J., Materials Science and Engineering A, vol. 344, 2003, pp. 253-260.

    Article  Google Scholar 

  16. Hong, S. H., Ryu, H. J. and Baek, W. H., Materials Science and Engineering A, vol. 333, 2002, pp. 187-192.

    Article  Google Scholar 

  17. Gero, R., Borukhin, L. and Pikus, I., Materials Science and Engineering A, vol. 302, 2001, pp. 162-167.

    Article  Google Scholar 

  18. H. J. Ryu and S. H. Hong: Mater. Sci. Eng. A, vol. 363, 2003, pp. 179–184.

    Article  Google Scholar 

  19. A. Upadhyaya: Mater. Chem. Phys., vol. 67, 2001, pp. 101–110.

    Article  Google Scholar 

  20. Williams, D.J., Clyens, S. and Johnson W., Pow. Metall. Vol. 2, 1980, 92-94.

    Article  Google Scholar 

  21. Lezanski, J. and Rutkowski, W., Pow. Metall. Int. vol. 19, 1987, 29-31.

    Google Scholar 

  22. Jing-lian, F., Tao, L., Hui-chao, C. and Deng-long, W., Journal of Materials Processing Technology, vol. 208, 2008, pp. 463–469.

    Article  Google Scholar 

  23. Lin, K. H., Hsu, C. S. and Lin, S. T., International Journal of Refractory Metals and Hard Materials, vol. 21, 2003, pp. 193-203.

    Article  Google Scholar 

  24. Pugh, J.W., Metall. Trans. vol. 4 (2), 1973, pp 533-538.

    Article  Google Scholar 

  25. Wright P.K., Metall. Trans. A vol. 9 (7), 1978, pp 955-963.

    Article  Google Scholar 

  26. Davis, J.W., Barabash, V.R., Makhankov, A., Plochl, L., Slattery, K.T., J. Nucl. Mater. Vol. 258-263, 1998, pp 308-312.

    Article  Google Scholar 

  27. Mabuchi, M., Okamoto, K., Saito, N., Nakanishi, M., Yamada, Y. and Igarashi, T., Mater. Sci. Eng. A vol. 214, 1996, pp 174-176.

    Article  Google Scholar 

  28. Mabuchi, M., Okamoto, K., Saito, N., Asahina, T. and Igarashi, T., Mater. Sci. Eng. A vol. 237, 1997, pp241-249.

    Article  Google Scholar 

  29. Ryu, H.J. and Hong S.H., Mater. Sci. Eng. A vol. 363, 2003, pp179-184.

    Article  Google Scholar 

  30. Itoh, Y. and Ishiwata, Y.. JSME Int. J Series vol. A39, 1996, pp 429-435.

    Google Scholar 

  31. Kim, Y., Hong, M-H., Lee, S.H., Kim, E-P., Lee, S. and Noh J-W., Met. Mat. Int., vol. 12, 2006, pp 245-251.

    Article  Google Scholar 

  32. M-N. Avettand-Fenoel, R. Taillard, and J. Dhers: Int J Refract Met Hard Mater., 2003, vol. 21, pp. 205–11.

    Article  Google Scholar 

  33. Lassner, E. and Schubert, W. D., ‘‘ Tungsten Properties Chemistry Technology of the Element, Alloys, and Chemical Compounds’’, Kluwer Academic, New York, USA, 1999.

    Google Scholar 

  34. Upadhyaya, A., Materials Chemistry and Physics, vol. 67, 2001, pp. 101-110.

    Article  Google Scholar 

  35. Bucki, J. J., Fortuna-Zaleśna, E., Kowalczyk, M. and Ludyński, Z., Kompozyty, vol. 11, 2011, pp. 268–273.

    Google Scholar 

  36. Tsyntsarua, N., Cesiulis, H., Pellicer, E., Celis, J. P. and Sorte J., Electrochimica Acta, vol. 104, 2013, pp. 94–103.

    Article  Google Scholar 

  37. J. Nogués, E. Apinaniz, J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puz-niak, I. Fita, J. S. Garitaonandia, S. Surinach, J. S. Munoz, M. D. Baró, F. Plazaola, and F. Baudelet: Phys. Rev. B, 2006, vol. 74, pp. 024407.

  38. U. Admon, M.P. Dariel, E. Grunbaum, J.C. Lodder, Journal of Applied Physics 62 (1987) 1943.

    Article  Google Scholar 

  39. E. Pellicer, A. Varea, S. Pané, B.J. Nelson, E. Menéndez, M. Estrader, S. Surinach, M.D. Baró, J. Nogués, J. Sort, Advanced Functional Materials 20 (2010) 983.

    Article  Google Scholar 

  40. Daoush WM, Lee KH, Park HS, et al. Int J Refract Metal Hard Mater 2009; 27: 83–89.

    Article  Google Scholar 

  41. Nirmala, B., Vallal, P. K., Amuthan, R. and Mahendran, M., ‘‘ Intermartensitic Transformation in Ni54.8Mn23.2Ga21.7 vol. 1 (1), 2011, pp. 8-13.

    Google Scholar 

  42. Akhtar, F., International Journal of Refractory Metals and Hard Materials, vol. 26, 2008, pp. 145–151.

    Article  Google Scholar 

  43. Kim, Y., Lee, K. H., Kim, E. P., Cheong, D. I. and Hong, S. H., International Journal of Refractory Metals and Hard Materials, vol. 27, 2009, pp. 842-846.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the late Professor of Powder Technology, Professor Sayed Farag Moustafa, at the Central Metallurgical Research and Development Institute, who had suggested the line of this work, and pray to God to let his soul rest in peace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Mohamed Rashad Daoush.

Additional information

Manuscript submitted July 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoush, W.M.R., Elsayed, A.H.A., Kady, O.A.G.E. et al. Enhancement of Physical and Mechanical Properties of Oxide Dispersion-Strengthened Tungsten Heavy Alloys. Metall Mater Trans A 47, 2387–2395 (2016). https://doi.org/10.1007/s11661-016-3360-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3360-7

Keywords

Navigation