Skip to main content
Log in

High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrasion-resistant cast irons—classification (ISO 21988:2006), International Organization for Standardization, Geneva, 2006.

  2. 2. B. Hinckley, K.F. Dolman, R. Wuhrer, W.Y. Yeung and A.S. Ray: Materials Forum, 2008, vol. 32, pp. 55-71.

    Google Scholar 

  3. 3. A.E. Karantzalis, A. Lekatou and E. Diavati: J. Mater. Eng. Perform., 2009, vol. 8, pp. 1078-85.

    Article  Google Scholar 

  4. 4. V.G. Efremenko, K. Shimizu and Yu.G. Chabak: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5434-46.

    Article  Google Scholar 

  5. 5. H. Liu, J. Wang, B. Shen, H. Yang, S. Gao and S. Huang: J. Univ. Sci. Technol. Beijing, 2007, vol. 14, pp. 231-35.

    Article  Google Scholar 

  6. 6. V.G. Efremenko, Yu.G. Chabak and M. N. Brykov: J. Mater. Eng. Perform., 2012, vol. 22, pp. 1378-85.

    Article  Google Scholar 

  7. 7. Yu.G. Chabak and V.G. Efremenko: Metallofiz. Noveishie Tekhnol., 2012, vol. 34, pp. 1205-20.

    Google Scholar 

  8. 8. T.L. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 287-97.

    Article  Google Scholar 

  9. 9. M. J. Gildersleeve: Mater. Sci. Technol., 1991, vol. 7, pp. 307-10.

    Article  Google Scholar 

  10. 10. N. Israelsson, K. A. Unocic, K. Hellstrom, T. Jonsson, M. Norell, J.-E. Svensson, L.-G. Johansson: Oxid. Met., 2015, vol. 84, pp. 105-27.

    Article  Google Scholar 

  11. 11. T. Jonsson, B. Pujilaksono, H. Heidari, F. Liu, J.-E. Svensson, M. Halvarsson and L.-G. Johansson: Corros. Sci., 2013, vol. 75, pp. 326-36.

    Article  Google Scholar 

  12. 12. S. Karlsson, J. Pettersson, L.-G. Johansson and J.-E. Svensson: Oxid. Met., 2012, vol.78, pp. 83-102.

    Article  Google Scholar 

  13. 13. F. Liu, J. E. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J.E. Svensson and M. Halvarsson: Oxid. Met., 2006, vol. 66, pp. 295-319.

    Article  Google Scholar 

  14. 14. K.A. Habib,M.S. Damra,J.J. Saura, I. Cervera, and J. Belles : Int. J. Corros., 2011, vol. 1, pp. 1-10.

    Article  Google Scholar 

  15. 15. N. Otsuka, Y. Nishiyama and T. Kudo: Oxid. Met., 2004, vol. 62, pp. 121-39.

    Article  Google Scholar 

  16. 16. H. Asteman, J.-E. Svensson, and L.-G. Johansson: Oxid. Met., 2002, vol. 57, pp. 193-219.

    Article  Google Scholar 

  17. 17. M.J. Garcia-Vargas, L. Lelait, V. Kolarik, H. Fietzek, M.M. Juez-Lorenzo: Mater. High Temp., 2005, vol. 22, pp.245-51.

    Article  Google Scholar 

  18. 18. Z. Zurek, A. Jaron and M. Homa: Oxid. Met., 2011, vol. 76, pp. 273-85.

    Article  Google Scholar 

  19. 19. A.N. Hansson and M.A.J. Somers: Mater. High Temp., 2005, vol. 22, pp. 223-29.

    Article  Google Scholar 

  20. 20. E. Hryha, and L. Nyborg: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1736-47.

    Article  Google Scholar 

  21. 21. J.H. Ramírez-Ramírez, R. Colás, N.F. Garza Montes de Oca: J. Iron Steel Res. Int., 2013, vol. 20, pp. 122-29.

    Article  Google Scholar 

  22. A. Zhang (1993) Acta Metall. Sin. (Engl. Lett.), vol. 6, pp. 447-52.

    Google Scholar 

  23. 23. N. Miyakawa, K. Wakasugi, M. Nomura, M. Sakamoto and K. Keisaku: J. Jpn. Foundry Eng. Soc., 2001, vol. 73, pp. 3-8.

    Google Scholar 

  24. 24. W.-G. Guo and Y. Liu: Phys. Exam. Test., 2011, vol. 29, pp. 15-19.

    Google Scholar 

  25. 25. Y.-H. Li, S.-Y. Gou and L.-J. Pan: Foundry Technol. , 2010, vol. 31, pp. 1441-44.

    Google Scholar 

  26. 26. X.-Y. Gao, J.-Y. Liu, J. Liu: Heat Treat. Met., 2011, vol. 36, pp. 10-13.

    Google Scholar 

  27. 27. I. Fernández and F. J. Belzunce: Mater. Charact., 2008, vol. 59, pp. 669-74.

    Article  Google Scholar 

  28. 28. H.-N. Liu, M. Sakamoto, M. Nomura and K. Ogi: Wear, 2001, vol. 250, pp. 71-75.

    Article  Google Scholar 

  29. 29. R.N. Durham, B. Gleeson, and D.J. Young: Oxid. Met., 1998, vol. 50, pp. 139-65.

    Article  Google Scholar 

  30. 30. G. F. Vander Voort: Metallography, Principles and Practice, ASTM International, 1999.

    Google Scholar 

  31. G. Bockstiegel: in Perspectives in Powder Metallurgy: Fundamentals, Methods and Applications, vol. 3: Iron Powder Metallurgy, H.H. Hausner, K.H. Roll, and P.K. Johnson, eds., Springer, Dordrecht, 1998.

  32. 32. H.K.D.H. Bhadeshia: Met. Sci., 1981, vol. 15, pp. 477-79.

    Article  Google Scholar 

  33. A. Vasilyev: Proceedings of MS&T2006 (Materials Science and Technology 2007), Detroit, 2007, pp. 537–51.

  34. J. Gegner, A.A. Vasilyev, P.-J. Wilbrand, and M. Kaffenberger: Proceedings of MMT2012 (7th Intern. Conf. on Materials and Modelling Technologies), Ariel, 2012, pp. 261–87.

  35. 35. H. Sueyoshi, K. Suenaga: J. Jpn. Inst. Met., 1987, vol. 51, pp. 518-24.

    Google Scholar 

  36. 36. M. Qian: Scr. Mater., 1999, vol. 41, pp. 1301-03.

    Article  Google Scholar 

  37. J.R. Davis: Surface Hardening of Steels: Understanding the Basics, ASTM International, Materials Park, 2002.

    Google Scholar 

  38. 38. G. Laird II: AFS Transactions, 1988, vol. 97, pp. 339-57.

    Google Scholar 

  39. G.E. Totten, M.A.H. Howes: Steel Heat Treatment Handbook, Marcel Dekker Inc., New York, 1997.

    Google Scholar 

  40. 40. H. Yamamoto, K. Shinzaki, M. Morishita, K. Koyama: Mater. Trans., 2006, vol. 47, pp. 1878-81.

    Article  Google Scholar 

  41. 41. Woo-Sang Jung and Soon-Hyo Chung: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18., pp. 1-7.

    Article  Google Scholar 

  42. 42. H.O. Pierson: Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, 1996.

    Google Scholar 

  43. 43. R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering: Science, Process, Applications, Butterworth-Heinemann, 1999.

    Google Scholar 

  44. 44. O.N. Dogan, J.A. Hawk, and G. Laird II: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1315-28.

    Article  Google Scholar 

  45. 45. Zhou Jiyang: China Foundry, 2011, vol. 8, pp. 337-49.

    Google Scholar 

  46. 46. Randle, G. Laird II: J. Mater. Sci., 1993, vol. 28, pp. 4245-49.

    Article  Google Scholar 

  47. 47. M. Qian, L. Biacheng and W. Zhaochang: J. Mater. Sci., 1995, vol. 311, pp. 3383-86.

    Article  Google Scholar 

  48. A. Lekatou, R.D. Walker (1995) Ironmaking-Steelmaking, 22:pp. 393-404.

    Google Scholar 

  49. 49. P. Tabrett, I. R. Sare and M. R. Ghomashchi: Int. Mater. Rev., 1996, vol. 41, pp. 59-82.

    Article  Google Scholar 

  50. 50. C. Çetinkaya: Mater. Des., 2006, vol. 27, pp. 437-45.

    Article  Google Scholar 

  51. 51. S.K. Hann and J.D. Gates: J. Mater. Sci., 1997, vol. 32, pp. 1249-59.

    Article  Google Scholar 

  52. 52. A.E. Karantzalis, A. Lekatou and H. Mavros: Int. J. Cast Met. Res. , 2009, vol. 22, pp. 448-56.

    Article  Google Scholar 

  53. V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevskaya, K. Kusumoto, K. Yamamoto (2014) Int. J. Miner. Metall. Mater., vol. 21, pp. 1096-1108.

    Article  Google Scholar 

  54. G. Wille, X. Bourrat, N. Maubec, R. Guegan, A. Lahfid (2014) In: J. Yarwood, R. Douthwaite, S.B. Duckett, eds., Spectroscopic properties of inorganic and organometallic compounds, The Royal Society of Chemistry, Cambridge

    Google Scholar 

  55. 55. W. Martienssen, and H. Warlimont: Springer Handbook of Condensed Matter and Materials Data. Springer, Berlin, 2005.

    Book  Google Scholar 

Download references

Acknowledgment

V.G. Efremenko, Yu.G. Chabak, and A.V. Efremenko acknowledge the financial support by the Ministry of Education and Science of Ukraine (Project No. 0115U000172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Efremenko.

Additional information

Manuscript submitted July 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremenko, V.G., Chabak, Y.G., Lekatou, A. et al. High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere. Metall Mater Trans A 47, 1529–1543 (2016). https://doi.org/10.1007/s11661-016-3336-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3336-7

Keywords

Navigation