Skip to main content
Log in

The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a series of experiments involving Cr-Fe-C hardfacing alloys is conducted to evaluate the effect of oscillating traverse welding on microstructure and performance of clad alloys. The alloys are designed to exhibit hypoeutectic, eutectic, and hypereutectic morphology. The morphology of the heat-affected zone (HAZ) of the unmelted metal, the solidified remelted metal, and the fusion boundary exhibited distinct characteristics. In the hypoeutectic and the eutectic alloys, the same lamellar eutectic structure can be observed as the solidified structure, and they also showed the same evolution in the HAZ. In the hypereutectic alloy, the incomplete weld pool blending results in a eutectic morphology instead of a fully hypereutectic morphology. The hardness result reveals that, for the hypereutectic alloy, the eutectic region, instead of the HAZ, is the weak point. The wear test shows that the hypoeutectic alloy exhibits the same wear behaviors in both the remelted metal and the HAZ, and so is the hypereutectic alloy; the eutectic alloy remelted metal and the HAZ have different wear morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Colaço, R. Vilar, Wear, 2003, vol. 255, pp. 643 - 650.

    Article  Google Scholar 

  2. P. F. Mendez, N. Barnes, K. Bell, S. D. Borle, S. S. Gajapathi, S. D. Guest, H. Izadi, A. K. Gol, G. Wood, J. Manuf. Process, 2014, vol. 16, pp. 4 - 25.

    Article  Google Scholar 

  3. H.H. Lai, C.C. Hsieh, C.M. Lin, Weite Wu, Surf. Coat. Technol., 2014, vol. 239, pp. 233 – 239.

    Article  Google Scholar 

  4. C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh, W. Wu, Surf. Coat. Technol., 2010, vol. 205, pp. 2590 - 2596.

    Article  Google Scholar 

  5. C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh, W. Wu, Metall. Mater. Trans. A, May 2009, vol. 40A, pp. 1031 - 1038.

    Article  Google Scholar 

  6. G. Azimi, M. Shamanian, J. Alloy. Compd., 2010, vol. 505, pp. 598 - 603.

    Article  Google Scholar 

  7. A. Gualco, H. G. Svoboda, E. S. Surian, L. A. de Vedia, Mater. Des., 2010, vol. 31, pp. 4165 - 4173.

    Article  Google Scholar 

  8. J. Yang, J. Tian, F. Hao, T. Dan, X. Ren, Y. Yang, Q. Yang, Appl. Surf. Sci., 2014, vol. 289, pp. 437 - 444.

    Article  Google Scholar 

  9. N. Yüksel, S. Şahin, Mater. Des., 2014, vol. 58, pp. 491 - 498.

    Article  Google Scholar 

  10. C. Fan, M.C. Chen, C.M. Chang, W. Wu, Surf. Coat. Technol., 2006, vol. 201, pp. 908 - 912.

    Article  Google Scholar 

  11. S. Atamert, H. K. D. H. Bhadeshia, Mater. Sci. Eng. A, 1990, vol. 130, pp. 101 - 111.

    Article  Google Scholar 

  12. R. Veinthal, F. Sergejev, A. Zikin, R. Tarbe, J. Hornung, Wear, 2013, vol. 301, pp. 102 - 108.

    Article  Google Scholar 

  13. S.N. Krishnan, V. Toppo, A. Basak, K.K. Ray, Wear, 2006, vol. 260, pp. 1285 - 1294.

    Article  Google Scholar 

  14. S. Kuo: Welding Metallurgy, 2nd Edition, p. 349, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

    Google Scholar 

  15. K. Easterling: Introduction to Physical Metallurgy of Welding, p. 126, Butterworths Heinemann, Oxford, 1993.

    Google Scholar 

  16. D. François, F. M. Burdekin, Weld. in the World, 1998, vol. 41, pp. 138 - 143.

    Google Scholar 

  17. ASM Handbook, 10th Edition, vol. 3, Alloy Phase Diagrams, p. 1557, ASM International, Materials Park, Ohio, 1992.

  18. S. Chattopadhyay, C.M. Sellars, Acta Metall., 1982, vol. 30, pp. 157 - 170.

    Article  Google Scholar 

  19. H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf., 2001, vol. 44, pp. 417 - 428.

    Article  Google Scholar 

  20. S. Kuo: Welding Metallurgy, 2nd Edition, p. 97–117, Wiley, Inc., Hoboken, New Jersey, 2003.

    Google Scholar 

  21. W. A. Baeslack, J. C. Lippold, W. F. Savage, Weld. J., 1979, vol.58 pp. 168s - 176s.

    Google Scholar 

  22. Ö.N. Doğan, J.A. Hawk, G. Laird II, Metall. Mater. Trans. A, June 1997, vol. 28, pp. 1315 - 1328.

    Google Scholar 

  23. X.H. Tang, R. Chung, C.J. Pang, D.Y. Li, B. Hinckley, K. Dolman, Wear, 2011, vol. 271, pp. 1426 - 1431.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of the National Science Council under project NSC 102-2221-E-005-028-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weite Wu.

Additional information

Manuscript submitted April 14, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, HH., Hsieh, CC., Wang, JS. et al. The Effect of Oscillating Traverse Welding on Performance of Cr-Fe-C Hardfacing Alloys. Metall Mater Trans A 46, 5171–5181 (2015). https://doi.org/10.1007/s11661-015-3093-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3093-z

Keywords

Navigation