Skip to main content
Log in

Finite Element Modeling on the Compaction of Copper Powder Under Different Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Single-action die compaction of copper powders with initial loose natural packing and vibrated random dense packing structures was carried out numerically by finite element method and physically for validation. Furthermore, the compaction under various cyclic loadings was modeled to identify its effects on the compact properties. The results were analyzed and compared between compacts formed at different initial packing structures and different forming conditions, which indicate that at the same pressure, single-action die compaction on the dense uniform initial packing can produce compacts with high relative density, uniform density and stress distributions, which implies the necessity to improve initial packing density and uniformity in forming high performance compacts. Meanwhile, by using cyclic loading on such dense initial packing structures, compacts with higher packing density and more uniform density and stress distributions can be created. The numerical and physical results are comparable and in good agreement with the proposed double logarithmic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.W. Lewis, A.G.K. Jinka, and D.T. Gethin: Int. J. Powder Metall., 1993, vol. 25, pp. 287-293.

    Google Scholar 

  2. D.T. Gethin, V.D. Tran, R.W. Lewis, and A.K. Ariffin: Int. J. Powder Metall., 1994, vol. 30, pp. 385-398.

    Google Scholar 

  3. I.C. Sinka: Kona, 2007, vol. 25, pp. 4-22.

    Article  Google Scholar 

  4. N.A. Fleck: J. Mech. Phys. Solids, 1995, vol. 43, pp. 1409-1431.

    Article  Google Scholar 

  5. H.S. Kim, Y. Estrin, E.Y. Gutmanas, and C.K. Rhee: Mat. Sci. Eng. A, 2001, vol. 307, pp. 67-73.

    Article  Google Scholar 

  6. C.L. Martin, D. Bouvard, and S. Shima: J. Mech. Phys. Solids, 2003, vol. 51, pp. 667-693.

    Article  Google Scholar 

  7. H.P. Yu and C.F. Li: Acta Metallurgica Sinnica (English letters), 2007, vol. 20, pp. 277-283.

    Article  Google Scholar 

  8. H.A. Al-Qureshi, M.R.F. Soares, D. Hotza, M.C. Alves, and A.N. Klein: J. Mat. Proc. Technol., 2008, vol. 199, pp. 417-424.

    Article  Google Scholar 

  9. O. Coube and H. Riedel: Powder Metall., 2000, vol. 43, pp. 123-131.

    Article  Google Scholar 

  10. W. Bier, M.P. Dariel, N. Frage, S. Hartmann, and O. Michailov: Int. J. Mech. Sci., 2007, vol. 49, pp. 766-777.

    Article  Google Scholar 

  11. P.R. Brewin, O. Coube, P. Doremus, and J.H. Tweed, eds.: Modelling of Powder Die Compaction, Engineering Materials and Processes, Springer, New York, 2008, pp. 1–29.

  12. S.G. Selig and D.A. Doman: Journal of Machinery Manufacturing and Automation, 2014, vol. 3, pp. 32-40.

    Google Scholar 

  13. Y.X. Zhang, X.Z. An, and Y.L. Zhang: Applied Physics A, 2015, vol. 118, pp. 1015-1021.

    Article  Google Scholar 

  14. R.M. German: Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, Princeton, NY, 1994, pp. 192-220.

    Google Scholar 

  15. C.Y. Wu and A.C.F. Cocks: Powder Metall., 2004, vol. 47, pp. 127-136.

    Article  Google Scholar 

  16. O. Coube, A.C.F. Cocks, and C.Y. Wu: Powder Metall., 2005, vol. 48, pp. 68-76.

    Article  Google Scholar 

  17. L.C.R. Schneider, A.C.F. Cocks, and A. Apostolopoulos: Powder Metall., 2005, vol. 48, pp. 117-126.

    Article  Google Scholar 

  18. X. Xie and V.M. Puri: Part. Sci. Technol., 2006, vol. 24, pp. 411-426.

    Article  Google Scholar 

  19. S.F. Burch, A.C.F. Cocks, J.M. Prado, and J.H. Tweed: in Modeling of Powder Die Compaction, P.R. Brewin, O. Coube, P. Doremus, and J.H. Tweed, eds., Springer, London, 2008, pp. 131–50.

  20. C. Zhao, M.K. Jain, M. Bruhis, and R. Lawcock: Powder Technol., 2011, vol. 208, pp. 225-230.

    Article  Google Scholar 

  21. X.Z. An, R.Y. Yang, K.J. Dong, R.P. Zou, and A.B. Yu: Phys. Rev. Lett., 2005, vol. 95, pp. 205502-1-4.

    Article  Google Scholar 

  22. X.Z. An, R.Y. Yang, R.P. Zou, and A.B. Yu: Powder Technol., 2008, vol. 188, pp. 102-109.

    Article  Google Scholar 

  23. X.Z. An, C.X. Li, R.Y. Yang, R.P. Zou, and A.B. Yu: Powder Technol., 2009, vol. 196, pp. 50-55.

    Article  Google Scholar 

  24. X.Z. An. Z.T. Xing, and C.C. Jia: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2171-2179.

    Article  Google Scholar 

  25. Y.L. Wu, X.Z. An, and F. Huang: Mater. Res. Innov., 2014, vol. 18, pp. 1082-1086.

    Google Scholar 

  26. X.Z. An, S.S. He, H.D. Feng, and Q. Qian: Applied Physics A, 2015, vol. 118, pp. 151-162.

    Article  Google Scholar 

  27. M. Oyane, S. Shima, and Y. Kono: Bull. JSME, 1977, vol. 16, pp. 1254-1262.

    Article  Google Scholar 

  28. Y. Corapcioglu and T. Uz: Powder Technol., 1978, vol. 21, pp. 269-274.

    Article  Google Scholar 

  29. S. Shima and M. Oyane: Int. J. Mech. Sci., 1976, vol. 18, pp. 285-291.

    Article  Google Scholar 

  30. A.L. Gurson: J. Eng. Mater-T. Asme., 1977, vol. 99, pp. 2-5.

    Google Scholar 

  31. X.P. Ren: Powder Metallurgy Technology, 1992, vol. 10, pp. 9-12. (In Chinese).

    Google Scholar 

  32. N.A. Fleck, L.T. Kuhn, and R.M. McMeeking: J. Mech. Phys. Solids, 1992, vol. 40, pp. 1139-1162.

    Article  Google Scholar 

  33. AR.Khoei,M.Mofid,and A.Bakhshiani: J. Mat. Proc. Technol., 2002, vol. 130-131, pp. 75-180.

    Google Scholar 

  34. S. Kobayashi, S.I. Oh, and T. Altan: Metal Forming and the Finite Element method, Oxford University Press, Oxford, 1989.

    Google Scholar 

  35. A.H. Tavakoli, A. Simchi, and S.M. Seyed Reihani: Compos. Sci. Technol., 2005, vol. 65, pp. 2094-2104.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of National Natural Science Foundation of China (50974040), China New Century Excellent Talent Funds (NCET-10-0300), and Fundamental research funds for the Central Universities of China (N120202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong An.

Additional information

Manuscript submitted April 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, Y., Zhang, Y. et al. Finite Element Modeling on the Compaction of Copper Powder Under Different Conditions. Metall Mater Trans A 46, 3744–3752 (2015). https://doi.org/10.1007/s11661-015-2929-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2929-x

Keywords

Navigation