Skip to main content
Log in

Serration Dynamics in a Zr-Based Bulk Metallic Glass

  • Symposium: Bulk Metallic Glasses XI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Intermittent or serrated plastic flows have been widely observed in irreversible deformation through shear banding in bulk metallic glasses (BMGs). The strain-rate-dependent plasticity under uniaxial compression at 2 × 10−3, 2 × 10−4, and 2 × 10−5 s−1 in a Zr-based BMG is investigated. Serration events have a typical time scale at a relatively higher strain rate (2 × 10−3 s−1), while at lower strain rates, there is a lack of typical time scale. During serrations, the stress is falling rapidly, and the amplitude of the stress drop between the neighboring serrations is approximately equal. The stress drop vs time satisfies the exponential decay rule during jerk flows. Due to the serrated flow corresponding to the internal shear process, the free-volume model and stick–slip model are introduced to explain how the shear bands form and propagate and the cooperation of multiple shear bands. The mechanism is explained by relating the atomic-scale deformation with the macroscopic shear-band behavior, offering key ingredients to fundamentally cognize serrations in jerk flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Porteevin, F. L. Chatelier, C. R. Acad. Sci. Paris. 176 (1923) 507-510.

    Google Scholar 

  2. M. A. Lebyodkin, Y. Brechet, Y. Estrin, L. P. Kubin, Phys.Rev. Lett. 74, (1995) 4758-4561.

    Article  Google Scholar 

  3. E. Axinte, Mater. Des. 35 (2011) 518-556.

    Article  Google Scholar 

  4. M. F. Ashby, A. L. Greer, Scripta Mater. 54 (2006) 321-326.

    Article  Google Scholar 

  5. Y. Q. Li, M. Song, Y.H. He, Mater. Des. 31 (2010) 3555-3558.

    Article  Google Scholar 

  6. D. V. Louzguine, H. Kato, A. Inoue, Appl. Phys. Lett. 84 (2004)1088-1089.

    Article  Google Scholar 

  7. J. W. Qiao, Y. Zhang, G. L. Chen. Mater. Des. 30 (2009) 3966-3971.

    Article  Google Scholar 

  8. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.

    Article  Google Scholar 

  9. F. Spaepen, Acta Metall. 25 (1977) 407-415.

    Article  Google Scholar 

  10. W. J. Wright, R. Saha, W. D. Nix, Mater. Trans., JIM. 42 (2001) 642-649.

    Article  Google Scholar 

  11. J. J. Lewandowlki, A. L. Greer, Nat. Mater. 5 (2006) 15-18.

    Article  Google Scholar 

  12. W. J. Wright, R. B. Schwarz, W. D. Nix, Mater. Sci. Eng. A. 229 (2001) 319-321.

    Google Scholar 

  13. D. Klaümunzer, R. Maaβ, F. H. D. Torre, J. F. Löffler, Appl. Phys. Lett. 96 (2010) 061901.

    Article  Google Scholar 

  14. S. X. Song, T. G. Nieh, Intermetallics. 17 (2009) 762-767.

    Article  Google Scholar 

  15. S. X. Song, T. G. Nieh, Intermetallics. 19 (2011) 1968-1977.

    Article  Google Scholar 

  16. W. J. Wright, M.W. Samale, T. C. Hufnagel, M. M. LeBlanc, J. N. Florando, Acta Mater. 57 (2009) 4639-4648.

    Article  Google Scholar 

  17. H. J. Leamy, T. T. Wang, H. S. Chen, Metall. Trans. 3 (1972) 699-708.

    Article  Google Scholar 

  18. C. T. Liu, L. Heatherly, J. Horton, D. Easton, C. Carmichael, J. L. Wright, J. H. Schneibel, M. H. Yoo, C. H. Chen, A. Inoue, Metall Mater Trans A. 29 (1998) 1811-1820.

    Article  Google Scholar 

  19. B. Yang, C. T. Liu, T. G. Nieh, Appl Phys Lett. 88 (2006) 221911.

    Article  Google Scholar 

  20. A. S. Argon, Acta Metall. 27 (1979) 47-58.

    Article  Google Scholar 

  21. M. L. Falk, J. S. Langer, Phys Rev E. 57 (1998) 7192-7199.

    Article  Google Scholar 

  22. M. Q. Jiang, L. H. Dai, J. Mech. Phys Solids. 57 (2009) 1267-1292.

    Article  Google Scholar 

  23. B. A. Sun, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U, Kühn: J. Eckert, Acta Mater. 60 (2012) 4160-4171.

    Article  Google Scholar 

  24. R. Maaβ, D. Klaumünzer, J. F. Löffler, Acta Mater. 59 (2011) 3205-3213.

    Article  Google Scholar 

  25. F. H. D. Torre, A. Dubach, A. Nelson, J. F. Löffler, Mater Trans. 48 (2007) 1774-1780.

    Article  Google Scholar 

  26. F. H. D. Torre, A. Dubach, J. Schällibaum, J. F. Löffler, Acta Mater. 56 (2008) 4635-4646.

    Article  Google Scholar 

  27. S. X. Song, H. Bei, J. Wadsworth, T. G. Nieh, Intermetallics 16 (2008) 813-818.

    Article  Google Scholar 

  28. Z. Han, W. F. Wu, Y. Li, Y. J. Wei, H. J. Gao, Acta Mater. 57 (2009) 1367-1372.

    Article  Google Scholar 

  29. G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, W.H. Wang, Acta Mater. 57 (2009) 6146-6155.

    Article  Google Scholar 

  30. Y. F. Xue, L. Wang, X. W. Cheng, F. C. Wang, H. W. Cheng, H. F. Zhang, A. M. Wang, Mater. Des. 36 (2012) 284-288.

    Article  Google Scholar 

  31. S. Mukherjee, J. Schroers, Z. Zhou, W. L. Johnson, W. K. Rhim, Acta Mater. 52 (2004) 3689-3695.

    Article  Google Scholar 

  32. J.L. Ren, C. Chen, G. Wang, N. Mattern, J. Eckert, AIP Advances 1 (2011) 032158.

    Article  Google Scholar 

  33. J.L. Ren, C. Chen, Z.Y. Liu, R. Li, G. Wang, Phys. Rev. B. 86 (2012) 134303.

    Article  Google Scholar 

  34. H.J. Jensen: Self-Organized Criticality, Cambridge University Press, Cambridge, 1998, p. 11.

  35. M. W. Chen, Ann. Rev Mater Res. 38 (2008) 445-469.

    Article  Google Scholar 

  36. B. A. Sun, S. Pauly, J. Hu, W. H. Wang, U. Kühn, J. Eckert, Phys Rev Lett. 110 (2013) 225501.

    Article  Google Scholar 

  37. J. W. Qiao, Z. Wang, H.J. Yang, M. Li, W. Liang, AIP Advances 3 (2013) 032105.

    Article  Google Scholar 

  38. D. Klaumünzer, R. Maaβ, J. F. Löffler, J. Mater. Res. 26 (2011) 1453-1463.

    Article  Google Scholar 

  39. J. W. Qiao, Y. Zhang, P.K. Liaw, Intermetallics 18 (2012) 2057-2064.

    Article  Google Scholar 

  40. J. W. Qiao, F. Q. Yang, G. Y. Wang, P. K. Liaw, Y. Zhang, Scripta Mater. 63 (2010) 1081-1084.

    Article  Google Scholar 

  41. M. S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fressengeas, L. P. Kubin, Phys. Rev. Lett. 87 (2001)165508.

    Article  Google Scholar 

  42. T. Richeton, J. Weiss, F. Louchet, Nat. Mater. 4 (2005) 465-469.

    Article  Google Scholar 

  43. X. F. Pan, H. Zhang, Z. F. Zhang, M. Stoica, G. He, J. Eckert, J Mater. Res. 20 (2005) 2632-2638.

    Article  Google Scholar 

  44. B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Phys. Rev. Lett. 105 (2010) 035501.

    Article  Google Scholar 

  45. G. Ananthakrishna, S. J. Noronha, C. Fressengeas, L. P. Kubin, Phys. Rev. E 60 (1999) 5455-5462.

    Article  Google Scholar 

  46. W. H. Jiang, F. X. Liu, P. K. Liaw, H. Choo, Appl Phys Lett. 90 (2007) 181903.

    Article  Google Scholar 

  47. M. H. Cohen, D. Turnbull, J. Chem. Phys. 31 (1959) 1164-1169.

    Article  Google Scholar 

  48. J. D. Eshelby, Silid State Physics 3 (1956) 115.

    Google Scholar 

  49. Y. H. Liu, G. Wang, R.J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Science 315 (2007) 1385-1388.

    Article  Google Scholar 

  50. Y. Q. Cheng, E. Ma, Prog Mater Sci. 56 (2011) 379-473.

    Article  Google Scholar 

  51. Y. Q. Cheng, Z. Han, Y. Li, E. Ma, Phys Rev B 80 (2009) 134115.

    Article  Google Scholar 

  52. J. W. Qiao, H. L. Jia, C. P. Chuang, E. W. Huang, G. Y. Wang, P. K. Liaw, Y. Ren, Y. Zhang, Scripta Mater. 63 (2010) 871-74.

    Article  Google Scholar 

  53. J. W. Qiao, H. L. Jia, Y. Zhang, P. K. Liaw, L. F. Li, Mater. Chem. Phys. 136 (2012) 75-79.

    Article  Google Scholar 

Download references

Acknowledgments

J.W.Q. would like to acknowledge the financial support of National Natural Science Foundation of China (No. 51101110 and No. 51371122), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of China, and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (2013). H.J.Y. would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 51341006), State Key Lab of Advanced Metals and Materials (No. 2013-Z03), the Youth Science Foundation of Shanxi Province, China (No. 2014021017-3), and the financial supports from Key Laboratory of Cryogenics, TIPC, CAS (Grant No. CRYO201306). P.K.L. appreciates the financial support from US National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Qiao.

Additional information

Manuscript submitted March 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Qiao, J.W., Yang, H.J. et al. Serration Dynamics in a Zr-Based Bulk Metallic Glass. Metall Mater Trans A 46, 2404–2414 (2015). https://doi.org/10.1007/s11661-014-2483-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2483-y

Keywords

Navigation