Skip to main content
Log in

Synthesis, Characterization, and Thermoelectric Properties of Electrospun Boron-Doped Barium-Stabilized Bismuth-Cobalt Oxide Nanoceramics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the boron-doped barium-stabilized bismuth cobalt oxide thermoelectric nanocrystalline ceramic powders were produced by the polymeric precursor technique. The powders were characterized by X-ray diffraction, scanning electron microscopy, and the physical properties measurement system. The X-ray diffraction results showed that these patterns have mixture of two phases as face-centered cubic and body-centered cubic. Values of the crystallite size, the dislocation density, and the microstrain were calculated by the Scherrer equation. According to these values, the crystallite size decreased from 60 to 51 nm with the boron addition in the boron-undoped and boron-doped samples, respectively. The scanning electron microscope results showed that nanograins are rarely seen in the boron-undoped samples, but nanograins turn into needle-like and layered structures with boron addition. The diameters distribution of nanofibers was calculated. The average diameter of the boron-doped sample is smaller than the boron-undoped sample. The physical properties measurement system values showed that the electrical and thermal conductivity, the Seebeck coefficient, and the figure of merit increased with the temperature rise for both samples. The boron-doping effect increased the electrical and thermal conductivity, decreased the Seebeck coefficient, and decreased the figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and H. Yamada: Chem. Mater., 2000, vol. 12, pp. 2424-7.

    Article  Google Scholar 

  2. A. Maignan, S. Hébert, M. Hervieu, C. Michel, D. Pelloquin, and D. Khomskii: J. Phys. Condens. Matter., 2003, vol. 15, pp. 2711-23.

    Article  Google Scholar 

  3. V. Zlati and A.C. Hewson: Properties and Applications of Thermoelectric Materials, Springer, Dordrecht, The Netherlands, 2008.

    Google Scholar 

  4. M.A. Kamarudin, S.R. Sahamir, R.S. Datta, B.D. Long, M.F.M. Sabri, and S.M. Said: Sci. World J., 2013, vol. 2013, art. id 713640. doi:10.1155/2013/713640.

  5. F. Ma, Y. Ou, Y. Yang, Y. Liu, S. Xie, J.F. Li, G. Cao, R. Proksch, and J. Li: J. Phys. Chem. C, 2010, vol. 114, pp. 22038-43.

    Article  Google Scholar 

  6. D.K. Taggart, Y. Yang, S.C. Kung, T.M. McIntire, and R.M. Penner: Nano Lett., 2011, vol. 11, pp. 125-31.

    Article  Google Scholar 

  7. W.E. Teo and S. Ramakrishna: Nanotechnol., 2006, vol. 17, pp. R89-106.

    Article  Google Scholar 

  8. I. Uslu, S.S. Cetin, A. Aytimur, S. Yuceyurt, and M.O. Erdal: J. Inorg. Organomet. Polym., 2012, vol. 22, pp. 766-71.

    Article  Google Scholar 

  9. H. Wu, W. Pan, D. Lin, and H. Li: J. Adv. Ceram., 2012, vol. 1, pp. 2-23.

    Article  Google Scholar 

  10. M.A. Senaris-Rodriguez and J.B. Goodenough: J. Solid State Chem., 1995, vol. 118, pp. 323-36.

    Article  Google Scholar 

  11. J. Sunarso: Ph.D. Dissertation, The University of Queensland, 2010.

  12. J. Okamoto, G. Shimizu, S. Kubo, Y. Yamada, H. Kitagawa, A. Matsushita, Y. Yamada, and F. Ishikawa: J. Phys.: Conf. Ser., 2009, vol. 176, p. 012042.

    Article  Google Scholar 

  13. T. Tunc, I. Uslu, S. Durmusoglu, S. Keskin, A. Aytimur, and A. Akdemir: J. Inorg. Organomet. Polym., 2012, vol. 22, pp. 105–11.

  14. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1465-9.

    Article  Google Scholar 

  15. D. Chen, D. Yang, Q. Wang, and Z. Jiang: Ind. Eng. Chem. Res., 2006, vol. 45, pp. 4110-6.

    Article  Google Scholar 

  16. A. Aytimur, İ. Uslu, E. Çınar, S. Koçyiğit, F. Özcan, and A. Akdemir: Ceram. Int., 2013, vol. 39, pp. 911-6.

    Article  Google Scholar 

  17. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, p. 103505.

    Article  Google Scholar 

  18. C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, and S.Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 881-93.

    Article  Google Scholar 

  19. C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang: J. Alloys Compd., 2010, vol. 490, pp. 160-5.

    Article  Google Scholar 

  20. F.J. Wang, Y. Zhang, and G.L. Chen: J. Alloys Compd., 2009, vol. 478, pp. 321-4.

    Article  Google Scholar 

  21. C. Suryanarayana and M.G. Norton: X-Ray Diffraction a Practical Approach, Plenum Press, New York, NY, 1998.

    Book  Google Scholar 

  22. B. Karunagaran, R.T.R. Kumar, D. Mangalaraj, S.K. Narayandass, and G.M. Rao: Cryst. Res. Technol., 2002, vol. 37, pp. 1285-92.

    Article  Google Scholar 

  23. P.H. Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, NY, 1974.

    Google Scholar 

  24. N.S. Prasad and K.B.R. Varma: Mater. Sci. Eng. B-Adv., 2002, vol. 90, pp. 246-53.

    Article  Google Scholar 

  25. E. Alvarado, L.M. Torres-Martinez, A.F. Fuentes, and P. Quintana: Polyhedron, 2000, vol. 19, pp. 2345-51.

    Article  Google Scholar 

  26. Y. Ding, G.T. Zhang, H. Wu, B. Hai, L.B. Wang, and Y.T. Qian: Chem. Mater., 2001, vol. 13, pp. 435-40.

    Article  Google Scholar 

  27. H. Katsura, T. Hashimoto, and Y. Suemune: J. Jpn. Appl. Phys., 1991, vol. 30, pp. 274-9.

    Article  Google Scholar 

  28. S.Y. Wua and H.N. Dong: Z. Naturforsch., 2004, vol. 59A, pp. 563-7.

    Google Scholar 

  29. S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, and Z. Ma: An Introduction to Electrospinning and Nanofibers, World Scientific, Hackensack, NJ, 2005.

    Book  Google Scholar 

  30. S.L. Shenoy, W.D. Bates, H.L. Frisch, and G.E. Wnek, Polymer, 2005, vol. 46, pp. 3372-84.

    Article  Google Scholar 

  31. C. Song, X. Wang, R. Huang, J. Song, and Y. Guo: Mater. Chem. Phys., 2013, vol. 142, pp. 292-6.

    Article  Google Scholar 

  32. R. Funahashi, I. Matsubara, and S. Sodeoka: Appl. Phys. Lett., 2000, vol. 76, pp. 2385-7.

    Article  Google Scholar 

  33. S. Li, R. Funahashi, I. Matsubara, H. Yamada, K. Ueno, and S. Sodeoka: Ceram. Int., 2001, vol. 27, pp. 321-4.

    Article  Google Scholar 

  34. D. Wang, L. Chen, Q. Yao, and J. Li: Solid State Commun., 2004, vol. 129, pp. 615-8.

    Article  Google Scholar 

  35. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.F. Li, and J. Li: J. Phys. Chem. C, 2010, vol. 114, pp. 10061-5.

    Article  Google Scholar 

  36. W. Xie, S. Zhu, X. Tang, J. He, Y. Yan, V. Ponnambalam, Q. Zhang, S.J. Poon, and T. Tritt: J. Phys. D: Appl. Phys., 2009, vol. 42, p. 235407.

    Article  Google Scholar 

  37. K. Zabrocki, P. Ziolkowski, T. Dasgupta, J. De Boor, and E. Muller: J. Electron. Maters., 2013, vol. 42, pp. 2402-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhat Koçyiğit.

Additional information

Manuscript submitted February 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çinar, E., Koçyiğit, S., Aytimur, A. et al. Synthesis, Characterization, and Thermoelectric Properties of Electrospun Boron-Doped Barium-Stabilized Bismuth-Cobalt Oxide Nanoceramics. Metall Mater Trans A 45, 3929–3937 (2014). https://doi.org/10.1007/s11661-014-2343-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2343-9

Keywords

Navigation