Skip to main content

Advertisement

Log in

Structure, Characterization and Thermal Properties of the Form-Stable Paraffin/High-Density Polyethylene/Expanded Graphite/Epoxy Resin Composite PCMs for Thermal Energy Storage

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The form-stable paraffin/high-density polyethylene/expanded graphite/epoxy resin composite phase change materials (CPCMs), exhibiting suitable thermal properties, including low melting temperature, high conductivity and high phase change enthalpy, was developed in this work. Herein, paraffin (PA) was utilized as a core PCM. High-density polyethylene (HDPE) was utilized for the shape stabilization and preventing the PCMs leakage. Expanded graphite (EG) was used to increase its thermal conductivity and act also in the porous supporting material. Epoxy resin (ER) was used to provide flexible encapsulated scaffold morphology and keep a highly tight network structure of the PCMs. However, the physical architecture, the chemical architecture and thermal behavior properties of specimens were investigated by using the spectroscopy and calorimetry techniques. The scanning electron microscope (SEM), X-ray diffraction (XRD) and fourier transform infrared spectrometer FTIR tests have shown good uniformity structure and good compatibility of components. In addition, the thermal conductivity tests revealed that the thermal conductivity of PA, initially 0.31 W/(m·K) improved up to 1.9 times by adding the 6 wt% mass fraction of EG in composite PCMs. Furthermore, the differential scanning calorimeter (DSC) measurements indicated that PA melting enthalpy, initially 231 J/g decreased up to 125 J/g with the increase of the amount of HDPE which was due to the limitation caused by the atomic network constructed by the base material. The thermogravimetric analyzer (TGA) and leakage-proof revealed the enhancement of the degradation of PA with the raise of amount of the HDPE into the CPCMs. Therefore, the proposed form-stable CPCMs are a great candidate for the thermal regulation and thermal energy storage employment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lina J., Liua X., Li S., Zhang C., Yang S., A review on recent progress, challenges and perspective of battery thermal management system. International Journal of Heat and Mass Transfer, 2021, 167: 120834.

    Article  Google Scholar 

  2. Alva G., Lin Y., Fang G., An overview of thermal energy storage systems. Energy, 2018, 144: 341–378.

    Article  Google Scholar 

  3. Min P., Liu J., Li X., An F., Liu P., Shen Y., Koratkar N., Yu Z., Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Advanced Functional Materials, 2018, 28(51): 1–9.

    Article  Google Scholar 

  4. Du X., Qiu J., Deng S., Du Z., Cheng X., Wang H., Alkylated nanofibrillated cellulose/carbon canotubes aerogels supported form-stable phase change composites with improved n-alkanes loading capacity and thermal conductivity. ACS Applied Materials & Interfaces, 2020, 12(5): 5695–5703.

    Article  Google Scholar 

  5. Qian Y., Han N., Zhang Z., Cao R., Tan L., Li W., Zhang X., Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Applied Materials & Interfaces, 2019, 11(49): 45832–45843.

    Article  Google Scholar 

  6. Li J., Hu X., Zhang C., Luo W., Jiang X., Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage. Renewable Energy, 2021, 178: 118–127.

    Article  Google Scholar 

  7. Shen C., Li X., Yang G., Wang Y., Zhao L., Mao Z., Wang B., Feng X., Sui X., Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management. Chemical Engineering Journal, 2020, 385: 123958.

    Article  Google Scholar 

  8. Wu D., Ni B., Liu Y., Chen S., Zhang H., Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials. Journal of Materials Chemestry A, 2015, 3(18): 9645–9657.

    Article  Google Scholar 

  9. Wu W., Yang X., Zhang G., Chen K., Wang S., Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management, 2017, 138: 486–492.

    Article  Google Scholar 

  10. Huang Q., Zhong Z., Li X., Zhang G., Wei D., Yuan W., Zhang J., Zhou D., Experimental and numerical investigation on an integrated thermal management system for the li-ion battery module with phase change material. International Journal of Photoenergy, 2020, 2020: 1–14.

    Article  Google Scholar 

  11. Kee S.Y., Munusamy Y., Ong K.S., Review of solar water heaters incorporating solid-liquid organic phase change materials as thermal storage. Applied Thermal Engineering, 2018, 131: 455–171.

    Article  Google Scholar 

  12. Feng D., Feng Y., Qiu L., Li P., Zang Y., Zou H., Yu Z., Zhang X., Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109: 578–605.

    Article  Google Scholar 

  13. Zhang N., Yuan Y., Cao X., Du Y., Zhang Z., Gui Y., Latent heat thermal energy storage systems with solid-liquid phase change materials: a review. Advanced Engineering Materials, 2018, 20(6): 1–30.

    Article  Google Scholar 

  14. Gulfam R., Zhang P., Meng Z., Advanced thermal systems driven by paraffin-based phase change materials — a review. Applied Energy, 2019, 238: 582–611.

    Article  ADS  Google Scholar 

  15. Mishra D.K., Bhowmik S., Pandey K.M., Polyethylene glycol based form stable composite phase change material: a review. Journal of Physics: Conference Series, 2020, 1455: 012025.

    Google Scholar 

  16. Wei C., Structural phase transition of alkane molecules in nanotube composites. Physical Review B, 2007, 76(13): 1–10.

    Article  Google Scholar 

  17. Wang J., Huang Q., Li X., Zhang G., Wang C., Experimental and numerical simulation investigation on the battery thermal management performance using silicone coupled with phase change material. Journal of Energy Storage, 2021, 40: 102810.

    Article  Google Scholar 

  18. Konuklu Y., Şahan N., Paksoy H., Latent heat storage systems. Comprehensive Energy Systems, 2018, 2: 396–434.

    Article  Google Scholar 

  19. Mallamace F., Mallamace D., Chen S., Lanzafame P., Papanikolaou G., Hydrophilic and hydrophobic effects on the structure and themodynamic properties of confined water: Water in solutions. International Journal of Molecular Sciences, 2021, 22: 7547.

    Article  Google Scholar 

  20. Salmi M.S., Zoukrami F., Haddaoui N., Structure-properties relation in thermoplastic polymer/silica nanocomposites in presence of stearic acid as modifier agent. International Journal of Polymer Analysis and Characterization, 2021, 26(7): 604–617.

    Article  Google Scholar 

  21. Xiang H., An J., Zeng X., Liu X., Li Y., Yang C., Xia X., Preparation and properties of polyurethane rigid foam materials modified by microencapsulated phase change materials. Polymer Composites, 2020, 41(4): 1662–1672.

    Article  Google Scholar 

  22. Liu Z., Huang J., Cao M., Jiang G., Yan Q., Hu J., Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling. Applied Thermal Engineering, 2021, 185: 116415.

    Article  Google Scholar 

  23. Premnath D., Balaji S., Mathew J., Joseph R., Comparison of freezing characteristics of phasechange material in metallic and low density polyethylene spherical capsules. IOP Conference Series: Materials Science and Engineering, 2020, 912: 042079.

    Article  Google Scholar 

  24. Chriaa I., Trigui A., Karkri M., Jedidi I., Abdelmouleh M., Boudaya C., Thermal properties of shape-stabilized phase change materials based on low density polyethylene, hexadecane and SEBS for thermal energy storage. Applied Thermal Engineering, 2020, 171: 115072.

    Article  Google Scholar 

  25. Bai G., Fan Q., Song X., Preparation and characterization of pavement materials with phase-change temperature modulation. Journal of Thermal Analysis and Calorimetry, 2018. DOI: https://doi.org/10.1007/s10973-018-7862-y.

  26. Chen F., Wolcott M., Polyethylene/paraffin binary composites for phase change material energy storage in building: A morphology, thermal properties, and paraffin leakage study. Solar Energy Materials & Solar Cells, 2015, 137: 79–85.

    Article  Google Scholar 

  27. Xu J., Ma B., Mao W., Wang X., Strength characteristics and prediction of epoxy resin pavement mixture. Construction and Building Materials, 2021, 283: 122682.

    Article  Google Scholar 

  28. Hua J., Yuan C., Zhao X., Zhang J., Du J., Structure and thermal properties of expanded graphite/paraffin composite phase change material. Energy Sources, Part A: Recovery Utilization, and Environ Effects, 2018. DOI: https://doi.org/10.1080/15567036.2018.1496199.

  29. Li C., Zhao X., Zhang B., Xie B., He Z., Chen J., He J., Stearic acid/copper foam as composite phase change materials for thermal energy storage. Journal of Thermal Science, 2020, 29(2): 492–502.

    Article  ADS  Google Scholar 

  30. Jin W., Jiang L., Chen L., Gu Y., Guo M., Han L., Ben X., Yuan H., Lin Z., Preparation and characterization of capric-stearic acid/montmorillonite/graphene composite phase change material for thermal energy storage in buildings. Construction and Building Materials, 2021, 301: 124102.

    Article  Google Scholar 

  31. Wang Z., Zhang Z., Jia L., Yang L., Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Liion battery. Applied Thermal Engineering, 2015, 78: 428–436.

    Article  Google Scholar 

  32. Zhao J., Guo Y., Feng F., Tong Q., Qv W., Wang H., Microstructure and thermal properties of a paraffin/expanded graphite phase-change composite for thermal storage. Renewable Energy, 2011, 36(5): 1339–1342.

    Article  Google Scholar 

  33. Xie Y., Yang Y., Liu Y., Wang S., Guo X., Wang H., Cao D., Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Advanced Composites and Hybrid Materials, 2021, 4(3): 543–551.

    Article  Google Scholar 

  34. Zhang Y., Li W., Huang J., Cao M., Du G., Expanded graphite/paraffin/silicone rubber as high temperature form-stabilized phase change materials for thermal energy storage and thermal interface materials. Materials, 2020, 13(4): 894.

    Article  ADS  Google Scholar 

  35. Geng L., Wang S., Wang T., Luo R., Facile synthesis and thermal properties of nanoencapsulated n-dodecanol with SiO2 shell as shape-formed thermal energy storage material. Energy & Fuels, 2016, 30(7): 6153–6160.

    Article  Google Scholar 

  36. Zhang J., Wu X., Ke W., Li Z., A well encapsulating stearic acid composite phase change material sealed by calcium carbonate. Phase Transitions, 2019. DOI: https://doi.org/10.1080/01411594.2019.1679366.

  37. Jin H., Ji Z., Yuan J., Li J., Liu M., Xu C., Dong J., Hou P., Hou S., Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite. Journal of Alloys Compounds, 2015, 620: 361–367.

    Article  Google Scholar 

  38. Yin Z., Huang Z., Wen R., Zhang X., Tan B., Liu Y., Wu X, Fang M., Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Advances, 2016, 6(97): 95085–95091.

    Article  ADS  Google Scholar 

  39. Zhang J., Wu N., Wu X., Chen Y., Zhao Y., Liang J., Bai X., High latent heat stearic acid impregnated in expanded graphite. Thermochimica Acta, 2018, 663: 118–124.

    Article  Google Scholar 

  40. Zhang P., Hu Y., Song L., Ni J., Xing W., Wang J., Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material. Solar Energy Materials & Solar Cells, 2010, 94(2): 360–365.

    Article  Google Scholar 

  41. Cai Y., Wei Q., Huang F., Gao W., Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Applied Energy, 2008, 85: 765–775.

    Article  ADS  Google Scholar 

  42. Yan W., Du J., Ye W., Hong Y., Experimental study of thermal performance on the adsorption of stearic acid into different morphology sepiolite. Journal of Thermal Analysis and Calorimetry, 2021. DOI: https://doi.org/10.1007/s10973-021-10861-9.

  43. Gong S., Cheng X., Li Y., Wang X., Wang Y., Zhong H., Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage. Powder Technology, 2020, 367: 32–39.

    Article  Google Scholar 

  44. Ma T., Li L., Wang Q., Guo C., High-performance flame retarded paraffin/epoxy resin form-stable phase change material. Journal of Materials Science, 2018. DOI: https://doi.org/10.1007/s10853-018-2846-7.

  45. Deng H., Guo Y., He F., Yang Z., Fan J., He R., Zhang K., Yang W., Paraffin@graphene/silicon rubber form-stable phase change materials for thermal energy storage. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(8): 626–631.

    Article  ADS  Google Scholar 

  46. Maleki M., Ahmadi P.T., Mohamdi H., Karimian H., Ahmadi R., Emrooz H.B.M, Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam. Solar Energy Materials and Solar Cells, 2019, 191: 266–274.

    Article  Google Scholar 

Download references

Acknowledgment

This research was financially supported by the National Natural Science Foundation of China (52206087, 52130607), the Natural Science Foundation of Gansu Province, China (20JR10RA193), the Industrial Support Plan Project of Gansu Provincial Education Department (2022CYZC-21, 2021CYZC-27), the Doctoral Research Funds of Lanzhou University of Technology (061907) and the Red Willow Excellent Youth Project of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhoujian An or Xiaoze Du.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombeki Pea, H.J., An, Z., Du, X. et al. Structure, Characterization and Thermal Properties of the Form-Stable Paraffin/High-Density Polyethylene/Expanded Graphite/Epoxy Resin Composite PCMs for Thermal Energy Storage. J. Therm. Sci. 32, 2104–2114 (2023). https://doi.org/10.1007/s11630-023-1800-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1800-4

Keywords

Navigation