Skip to main content
Log in

Effects of Freestream Turbulence, Reynolds Number and Mach Number on the Boundary Layer in a Low Pressure Turbine

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In order to investigate the aerodynamics of a high speed low pressure turbine works in high Mach number and low Reynold number environment, the effect of freestream turbulence (FST) on the boundary layer development on the high speed low pressure turbine under different Reynolds numbers (Re) is numerically investigated. Large eddy simulation is adopted here with a subgrid scale model of Wall Adapting Local Eddy viscosity (WALE). Cases with Re ranging from 100 000 to 400 000 under an exit Mach number (Ma) of 0.87 have been considered at low and high FST levels. A low Ma case (0.17) under very low Re has also been studied under both low and high FST. It is found that higher Re or FST level leads to earlier transition. Re has a greater effect than FST on the development of boundary layer. The effect of FST on the boundary layer depends on the Re. The boundary layer development shows totally different behaviors under different Ma. A separation bubble could be formed under low Ma while no attachment could be detected under high Ma. The FST has a stronger effect on the separated boundary layer under low Ma, which could eliminate the separation in the present study. For all the cases under low FST, the Kelvin-Helmholtz instability is the dominate mechanism in the transition process. For the low Ma case with high FST, the streamwise streaks play a dominant role in the transition process. For the high Ma cases with high FST, both the streamwise streaks and Kelvin-Helmholtz instability work in the transition process. The streamwise streaks play a more important role when the Re increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

chord length/mm

C p :

pressure coefficient

C x :

axial chord length/mm

FST:

freestream turbulence

f :

frequency

H 12 :

Shape factor

Ma :

Mach number

p s :

Static pressure/Pa

p t :

Total pressure/Pa

Re :

Reynolds number

s :

pitch/mm

St :

Strouhal number

V :

Velocity

Zw :

Zweifel number

β 1 :

Inlet angle/(°)

β 2 :

Outlet angle/(°)

β s :

Stagger angle/(°)

τ wall :

Wall shear stress

δ :

displacement thickness

θ :

momentum thickness

e:

edge of boundary layer

in:

inlet

out:

outlet

s:

separation

References

  1. Hodson H.P., Howell R.J., The role of transition in high lift low-pressure turbines for aeroengines. Progress in Aerospace Sciences, 2005, 41(6): 419–454.

    Article  ADS  Google Scholar 

  2. Wisler D.C., The technical and economic relevance of understanding blade row interactions effects in turbomachinery. Von Karman institute for fluid dynamics lecture series, 1998, February.

  3. Hourmouziadis J., Aerodynatmic design of low pressure turbines. AGARD Lecture Series, 1989, 167: 120–133.

    Google Scholar 

  4. Hatman A., Wang T., Separated flow transition. Part1. Experimental methodology and mode classification. ASME Turbo Expo 1998, Stockholm, Sweden, 2–5 June 1998, paper No. 1998-GT-461.

  5. Hatman A., Wang T., Separated flow transition. Part2. Experimental results. In: ASME Turbo Expo 1998, Stockholm, Sweden, 2–5 June 1998, paper No. 1998-GT-462.

  6. Hatman A., Wang T., Separated flow transition. Part3. Primary modes and vortex dynamics. ASME Turbo Expo 1998, Stockholm, Sweden, 2–5 June 1998, paper No. 1998-GT-463.

  7. Hatman A. and Wang T., A prediction model for separated-flow transition. ASME Turbo Expo 1998, Stockholm, Sweden, 2–5 June 1998, paper No. 1998-GT-237.

  8. Volino, Ralph J., Separated flow transition under simulated low-pressure turbine airfoil conditions—part 1: mean flow and turbulence statistics. Journal of Turbomachinery, 2002, 124(4): 645.

    Article  Google Scholar 

  9. Simoni D., Lengani D., et al., Inspection of the dynamic properties of laminar separation bubbles: free-stream turbulence intensity effects for different Reynolds numbers. Experiments in Fluids, 2017, 58 (66): 1–14.

    Google Scholar 

  10. Taniguchi H., Sakai H., Funazaki K., Effects of free-stream turbulence on bypass transition of separated boundary layer on low-pressure turbine airfoils. Proceedings of 3rd Asian Joint Workshop on Thermophysics and Fluid Science, Matsue, Japan, 2010.

  11. Spalart P.R., Strelets M.K., Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 2000, 403: 329–349.

    Article  ADS  MATH  Google Scholar 

  12. Yang Z., Abdalla I.E., Effects of free-stream turbulence on large-scale coherent structures of separated boundary layer transition. International Journal for Numerical Methods in Fluids, 2010, 49(3): 331–348.

    Article  ADS  MATH  Google Scholar 

  13. Yang Z., Abdalla I.E., Effects of free-stream turbulence on a transitional separated-reattached flow over a flat plate with a sharp leading edge. International Journal of Heat & Fluid Flow, 2009, 30(5): 1026–1035.

    Article  Google Scholar 

  14. Langari M., Yang Z., Numerical study of the primary instability in a separated boundary layer transition under elevated free-stream turbulence. Physics of fluids, 2013, 25(7): 074106.

    Article  ADS  Google Scholar 

  15. Mcauliffe B.R., Yaras M.I., Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence. Journal of Turbomachinery, 2010, 132(1): 1063–1076.

    Article  Google Scholar 

  16. Đurović K., Vincentiis D.L., Simoni D., et al, Free-Stream turbulence-induced boundary-layer transition in low-pressure turbines. Journal of Turbomachinery, 2021, 143(8): 081015.

    Article  Google Scholar 

  17. Stadtmüller P., Fottner L., Fiala A., Experimental and numerical investigation of wake-induced transition on a highly loaded LP turbine at low Reynolds numbers. ASME Turbo Expo 2000, Munich, Germany. May 8–11, 2000, paper No. 2000-GT-0269.

  18. Liang Y., Zou Z.P., Liu H.X., et al., Experimental investigation on the effects of wake passing frequency on boundary layer transition in high-lift low-pressure turbines. Experiments in Fluids, 2015, 56: 81.

    Article  ADS  Google Scholar 

  19. Bolinches-Gisbert M., Robles D.C., Corral R., et al., Numerical and experimental investigation of the Reynolds number and reduced frequency effects on low-pressure turbine airfoils. Journal of Turbomachinery, 2021, 143(2): 021004.

    Article  Google Scholar 

  20. Malzacher, F.J., Gier J., Lippl F., Aerodesign and testing of an aeromechanically highly loaded LP turbine. Journal of turbomachinery, 2006, 128(4): 643–649.

    Article  Google Scholar 

  21. Sandberg R.D., Michelassi V., Pichler R., et al., Compressible direct numerical simulation of low-pressure turbines—part I: methodology. Journal of Turbomachinery, 2015, 137(5): 051011.

    Article  Google Scholar 

  22. Sandberg R.D., Michelassi V., Pichler R., et al., Compressible direct numerical simulation of low-pressure turbines—part II: effect of inflow disturbances. Journal of Turbomachinery, 2015, 137(7): 071005.

    Article  Google Scholar 

  23. Raverdy B., Mary I., Sagaut P., et al., High-resolution large-eddy simulation of flow around low-pressure turbine blade. AIAA Journal, 2003, 41: 390–397.

    Article  ADS  Google Scholar 

  24. Matsuura K., Kato C., Large-eddy simulation of compressible transitional cascade flows with and without incoming free-stream turbulence. JSME International Journal Series B Fluids and Thermal Engineering, 2006, 49: 660–669.

    Article  ADS  Google Scholar 

  25. Michelassi V., Wissink J.G., Frohlich J., et al., Large eddy simulation of flow around low-pressure turbine blade with incoming wakes. AIAA Journal, 2003, 41: 2143–2156.

    Article  ADS  Google Scholar 

  26. Memory C., Chen J., Bons J.P., et al., Implicit large eddy simulation of a stalled low-pressure turbine airfoil. Journal of Turbomachinery, 2016, 138(7): 071008.

    Article  Google Scholar 

  27. Ducros F., Nicoud F., Poinsot T., Wall-adapting local eddy-viscosity models for simulations in complex geometries. In: MJ Baines (ed.) ICFD. UK: Oxford University Computing Lab, 1998, pp. 293–300

    Google Scholar 

  28. Smagorinsky J., General circulation experiments with the primitive equations. Monthly Weather Review, 1963, 91(3): 99–164.

    Article  ADS  Google Scholar 

  29. Germano M., Piomelli U., Moin P., et al., A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 1998, 3(3): 1760–1765.

    ADS  MATH  Google Scholar 

  30. Lilly D.K., A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, 1992, 4(3): 633–635.

    Article  ADS  MathSciNet  Google Scholar 

  31. Michelassi V., Wissink J.G., Rodi W., et al., Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments. Flow Turbulence and Combustion, 2002, 69: 295–330.

    Article  MATH  Google Scholar 

  32. Roberts S.K., Yaras M.I., Large-eddy simulation of transition in a separation bubble. Journal of Fluids Engineering, 2006, 128(2): 232–238.

    Article  Google Scholar 

  33. Volino R.J., Hultgren L.S., Measurements in separated and transitional boundary layers under low-pressure turbine airfoil conditions. Journal of Turbomachinery, 2001, 123: 189–197.

    Article  Google Scholar 

  34. Yang Z., Voke P.R., Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 2001, 439: 305–333.

    Article  ADS  MATH  Google Scholar 

  35. McAuliffe B.R., Yaras M.I., Numerical study of instability mechanisms leading to transition in separation bubbles. Journal of Turbomachinery, 2008; 130: 021006.

    Article  Google Scholar 

  36. Watmuff J.H., Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 1999, 397: 119–169.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Pauley L.L., Moin P., Reynolds W.C., The structure of two-dimensional separation. Journal of Fluid Mechanics, 1990, 220: 397–411.

    Article  ADS  Google Scholar 

  38. Ripley M.D., Pauley L.L., The unsteady structure of two-dimensional steady laminar separation. Physics of Fluids A, 1993, 5(12): 3099–3106.

    Article  ADS  MATH  Google Scholar 

  39. Chandrasekhar S., Hydrodynamic and hydromagnetic stability. Mineola, NY: Dover Publications, 1981.

    MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Science and Technology Major Project of China (No. 2017-II-0008-0022, 2019-II-008-0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Duan.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, W., Qiao, W., Chen, W. et al. Effects of Freestream Turbulence, Reynolds Number and Mach Number on the Boundary Layer in a Low Pressure Turbine. J. Therm. Sci. 32, 1393–1406 (2023). https://doi.org/10.1007/s11630-023-1798-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1798-7

Keywords

Navigation