Skip to main content

Advertisement

Log in

Discharging of PCM in Various Shapes of Thermal Energy Storage Systems: A Review

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Utilizing the phase change materials in different thermal storage applications attains valuable attention due to the fascinating thermal properties of these materials. The comprehension of the thermal behaviour of phase change materials during the melting and solidification is considered a significant priority in designing the shape of the different containers. In this review, analytical, computational and experimental investigations that address solidification/freezing of phase change materials within thermal energy storage systems are discussed. Emphasis is placed on the role of the shape of adopted containers encompassing planar, spherical, cylindrical and annular vessels. Energy storage for solar thermal applications, waste heat recovery, and thermal management of buildings/computing platforms/photovoltaics has been the topics that benefit from these investigations. For all container shapes, the freezing process is controlled initially by natural convection, and a high solidification rate is observed. Later, the conduction dominates the process, and the freezing rate declines. The temperature and flow of cooling heat transfer fluid affect the solidification process, but the impact of heat transfer fluid temperature is more significant than its flow rate. Also, the freezing time increases with the container’s size and amount of contained PCM. The aspect ratio of the planar and vertical cylindrical cavities substantially influences the discharging time and rate. In contrast, the orientation of the annular cavity has a lower impact on the discharging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye W.B., Li C., Huang S.M., Hong Y., Validation of thermal modeling of unsteady heat source generated in a rectangular lithium-ion power battery. Heat Transfer Research, 2019, 50(3): 233–241. https://doi.org/10.1615/HeatTransRes.2018026809.

    Article  Google Scholar 

  2. Ye W.B., Li C., Gong S., Hong Y., Huang S.M., Xu S., Study on thermal uniformity and improvement for the drying of lithium-ion batteries. International Journal of Fluid Mechanics Research, 2019, 46(6): 487–498. https://doi.org/10.1615/InterJFluidMechRes.2019027012.

    Article  Google Scholar 

  3. Yang X., Guo J., Yang B., Cheng H., Wei P., He Y.L., Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Applied Energy, 2020, 279: 115772. https://doi.org/10.1016/j.apenergy.2020.115772.

    Article  Google Scholar 

  4. Wang X., Li W., Luo Z., Wang K., Shah S.P., A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy & Buildings, 2022, 260: 111923. https://doi.org/10.1016/j.enbuild.2022.111923.

    Article  Google Scholar 

  5. Hua W., Zhang L., Zhang X., Research on passive cooling of electronic chips based on PCM: A review. Journal of Molecular Liquids, 2021, 340: 117183. https://doi.org/10.1016/j.molliq.2021.117183.

    Article  Google Scholar 

  6. Fan L., Khodadadi J.M., Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24–46. https://doi.org/10.1016/j.rser.2010.08.007.

    Article  Google Scholar 

  7. Dhaidan N.S., Khodadadi J.M., Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: A review. Journal of Renewable and Sustainable Energy, 2017, 9(3): 034103. https://doi.org/10.1063/1.4989738.

    Article  Google Scholar 

  8. Guo J., Du Z., Liu G., Yang X., Li M.J., Compression effect of metal foam on melting phase change in a shell-and-tube unit. Applied Thermal Engineering, 2022, 206: 118124. https://doi.org/10.1016/j.applthermaleng.2022.118124.

    Article  Google Scholar 

  9. Dhaidan N.S., Nanostructures assisted melting of phase change materials in various cavities. Applied Thermal Engineering, 2017, 111: 193–212. https://doi.org/10.1016/j.applthermaleng.2016.09.093.

    Article  Google Scholar 

  10. Dhaidan N.S., Kokz S.A., Rashid F.L., Hussein A.K., Younis O., Al-Mousawi F.N., Review of solidification of phase change materials dispersed with nanoparticles in different containers. Journal of Energy Storage, 2022, 51: 104271. https://doi.org/10.1016/j.est.2022.104271.

    Article  Google Scholar 

  11. Jain S., Kumar K.R., Rakshit D., Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations. Sustainable Energy Technologies and Assessments, 2021, 48: 101633. https://doi.org/10.1016/j.seta.2021.101633.

    Article  Google Scholar 

  12. Dhaidan N.S., AL-Jethelah M., Study on the effect of nanoparticle dispersion on the melting of PCM in hemicylindrical cell. 12th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning (PCM 2018), Orford (Québec), Canada, 2018. https://doi.org/10.18462/iir.pcm.2018.0033.

  13. Radomska E., Mika L., Sztekler K., Lis L., The impact of heat exchangers’ constructions on the melting and solidification time of phase change materials. Energies, 2020, 13(18): 4840. https://doi.org/10.3390/en13184840.

    Article  Google Scholar 

  14. Zayed M.E., Zhao J., Li W., Elsheikh A.H., Elbanna A.M., Jing L., Geweda A.E., Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. Journal of Energy Storage, 2022, 30: 101341. https://doi.org/10.1016/j.est.2020.101341.

    Article  Google Scholar 

  15. Dhaidan N.S., Khodadadi J.M., Melting and convection of phase change materials in different shape containers: a review. Renewable and Sustainable Energy Reviews, 2015, 43: 449–477. https://doi.org/10.1016/j.rser.2014.11.017.

    Article  Google Scholar 

  16. Li Z., Zhang Q., Wang Z., Li J., Experimental study on melting process in an industrial level molten salt tank. Journal of Thermal Science, 2020, 29: 457–463. https://doi.org/10.1007/s11630-019-1125-5.

    Article  ADS  Google Scholar 

  17. Dhaidan N.S., Melting phase change of n-eicosane inside triangular cavity of two orientations. Journal of Renewable and Sustainable Energy, 2017, 9(5): 054101. https://doi.org/10.1063/1.5007894.

    Article  Google Scholar 

  18. Thenmozhi R., Sharmeela C., Natarajan P., Velraj R., Transient thermal management comparison of a microprocessor using PCMs in various configurations. Journal of Thermal Science, 2011, 20: 516–520. https://doi.org/10.1007/s11630-011-0504-3.

    Article  ADS  Google Scholar 

  19. Zivkovic B., Fujii I., An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Solar Energy, 2001, 70(1): 51–61. https://doi.org/10.1016/S0038-092X(00)00112-2.

    Article  ADS  Google Scholar 

  20. Jiji L.M., Gaye S., Analysis of solidification and melting of PCM with energy generation. Applied Thermal Engineering, 2006, 26: 568–575. https://doi.org/10.1016/j.applthermaleng.2005.07.008.

    Article  Google Scholar 

  21. Vynnycky M., Kimura S., An analytical and numerical study of coupled transient natural convection and solidification in a rectangular enclosure. International Journal of Heat and Mass Transfer, 2007, 50: 5204–5214. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.036.

    Article  MATH  Google Scholar 

  22. Lazaro A., Dolado P., Marín J.M., Zalba B., PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energy Conversion and Management, 2009, 50: 439–443. https://doi.org/10.1016/j.enconman.2008.11.002.

    Article  Google Scholar 

  23. Vitorino N., Abrantes J.C.C., Frade J.R., Numerical solutions for mixed controlled solidification of phase change materials. International Journal of Heat and Mass Transfer, 2010, 53: 5335–5342.

    Article  MATH  Google Scholar 

  24. Dolado P., Lazaro A., Marin J.M., Zalba B., Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energy Conversion and Management, 2011, 52: 1890–1907. https://doi.org/10.1016/j.enconman.2010.11.017.

    Article  Google Scholar 

  25. Teggar M., Mezaache E., Numerical investigation of a pcm heat exchanger for latent cool storage. Energy Procedia, 2013, 36: 1310–1319. https://doi.org/10.1016/j.egypro.2013.07.149.

    Article  Google Scholar 

  26. Iten M., Liu S., Shukla A., Experimental study on the thermal performance of air-PCM unit. Building and Environment, 2016, 105: 128–139. https://doi.org/10.1016/j.buildenv.2016.05.035.

    Article  Google Scholar 

  27. Prieto M.M., Gonzalez B., Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems. Renewable Energy, 2016, 97: 331–343. https://doi.org/10.1016/j.renene.2016.05.089.

    Article  Google Scholar 

  28. Waqas A., Kumar S., Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: An experimental study. Energy and Buildings, 2011, 43: 2621–2630. https://doi.org/10.1016/j.enbuild.2011.06.015.

    Article  Google Scholar 

  29. Hu H., Jin X., Zhang X., Effect of supercooling on the solidification process of the phase change material. Energy Procedia, 2017, 105: 4321–4327. https://doi.org/10.1016/j.egypro.2017.03.905.

    Article  Google Scholar 

  30. Zhou G., Zhu M., Xiang Y., Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit. Renewable Energy, 2018, 126: 537–544. https://doi.org/10.1016/j.renene.2018.03.077.

    Article  Google Scholar 

  31. Allouhia A., Ait Msaada A., Amineb M.B., et al., Optimization of melting and solidification processes of PCM: Application to integrated collector storage solar water heaters (ICSSWH). Solar Energy, 2018, 171: 562–570. https://doi.org/10.1016/j.solener.2018.06.096.

    Article  ADS  Google Scholar 

  32. Kumar N., Chavez R., Banerjee D., Experimental validation of thermal performance of a plate heat exchanger (PHX) with phase change materials (PCM) for thermal energy storage (TES). 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA. https://doi.org/10.1109/ITHERM.2018.8419529.

  33. Zarajabad O.G., Ahmadi R., Numerical investigation of different PCM volume on cold thermal energy storage system. Journal of Energy Storage, 2018, 17: 515–524. https://doi.org/10.1016/j.est.2018.04.013.

    Article  Google Scholar 

  34. Ghosh D., Guha C., Ghose J., Numerical investigation of paraffin wax solidification in spherical and rectangular cavity. Heat and Mass Transfer, 2019, 55: 3547–3559. https://doi.org/10.1007/s00231-019-02680-4.

    Article  ADS  Google Scholar 

  35. Nada S.A., Alshaer W.G., Saleh R.M., Thermal characteristics and energy saving of charging/discharging processes of PCM in air free cooling with minimal temperature differences. Alexandria Engineering Journal, 2019, 58(4): 1175–1190. https://doi.org/10.1016/j.aej.2019.10.002.

    Article  Google Scholar 

  36. Santos T., Kolokotroni M., Hopper N., Yearley K., Experimental study on the performance of a new encapsulation panel for PCM’s to be used in the PCM-air heat exchanger. Energy Procedia, 2019, 161: 352–359. https://doi.org/10.1016/j.egypro.2019.02.105.

    Article  Google Scholar 

  37. Bhamare D.K., Rathod M.K., Banerjee J., Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. Journal of Building Engineering, 2020, 28: 101018. https://doi.org/10.1016/j.jobe.2019.101018.

    Article  Google Scholar 

  38. Elsheniti M.B., Hemedah M.A., Sorour M.M., El-Maghlany W.M., Novel enhanced conduction model for predicting performance of a PV panel cooled by PCM. Energy Conversion and Management, 2020, 205: 112456. https://doi.org/10.1016/j.enconman.2019.112456.

    Article  Google Scholar 

  39. Gürel B., Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger. Applied Thermal Engineering, 2020, 174: 115312. https://doi.org/10.1016/j.applthermaleng.2020.115312.

    Article  Google Scholar 

  40. Patel J.R., Joshi V., Rathod M.K., Thermal performance investigations of the melting and solidification in differently shaped macro-capsules saturated with phase change material. Journal of Energy Storage, 2020, 31: 101635. https://doi.org/10.1016/j.est.2020.101635.

    Article  Google Scholar 

  41. Saitoh T., On the optimum design for latent heat thermal energy storage reservoir. Refrigeration, 1983, 58: 737–749.

    Google Scholar 

  42. Barba A., Spiga M., Discharge mode for encapsulated PCMs in storage tanks. Solar Energy, 2003, 7: 141–148. https://doi.org/10.1016/S0038-092X(03)00117-8.

    Article  ADS  Google Scholar 

  43. Chan C.W., Tan F.L., Solidification inside a sphere—an experimental study. International Communications in Heat and Mass Transfer, 2006, 33: 335–341. https://doi.org/10.1016/j.icheatmasstransfer.2005.10.010.

    Article  Google Scholar 

  44. Ismail K.A.R., Moraes R.I.R., A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. International Journal of Heat and Mass Transfer, 2009, 52: 4195–4202. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.031.

    Article  MATH  Google Scholar 

  45. Veerappan M., Kalaiselvam S., Iniyan S., Goic R., Phase change characteristic study of spherical PCMs in solar energy storage. Solar Energy, 2009, 83: 1245–1252. https://doi.org/10.1016/j.solener.2009.02.006.

    Article  ADS  Google Scholar 

  46. Wu S., Fang G., Liu X., Thermal performance simulations of a packed bed cool thermal energy storage system using n-tetradecane as phase change material. International Journal of Thermal Sciences, 2010, 49: 1752–1762. https://doi.org/10.1016/j.ijthermalsci.2010.03.014.

    Article  Google Scholar 

  47. Wu S., Fang G., Dynamic performances of solar heat storage system with packed bed using myristic acid as phase change material. Energy and Buildings, 2011, 43: 1091–1096. https://doi.org/10.1016/j.enbuild.2010.08.029.

    Article  Google Scholar 

  48. ElGhnam R.I., Abdelaziz R.A., Sakr M.H., Abdelrhman H.E., An experimental study of freezing and melting of water inside spherical capsules used in thermal energy storage systems. Ain Shams Engineering Journal, 2012, 3: 33–48. https://doi.org/10.1016/j.asej.2011.10.004.

    Article  Google Scholar 

  49. Archibold A., Rahman M.M., Gonzalez-Aguilar J., Goswami D.Y., Stefanakos E.K., Romero M., Phase change and heat transfer numerical analysis during solidification on an encapsulated phase change material. Energy Procedia, 2014, 57: 653–661. https://doi.org/10.1016/j.egypro.2014.10.220.

    Article  Google Scholar 

  50. Elmozughi A.F., Solomon L., Oztekin A., Neti S., Encapsulated phase change material for high temperature thermal energy storage—Heat transfer analysis. International Journal of Heat and Mass Transfer, 2014, 78: 1135–1144. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.087.

    Article  Google Scholar 

  51. Reddy R.M., Nallusamy N., Reddy K.H., The effect of PCM capsule material on the thermal energy storage system performance. International Scholarly Research Notices, 2014, Article ID: 529280. https://doi.org/10.1155/2014/529280.

  52. Chandrasekaran P., Cheralathan M., Velraj R., Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule-An experimental study. Energy, 2015, 90(1): 508–515. https://doi.org/10.1016/j.energy.2015.07.086.

    Article  Google Scholar 

  53. Chandrasekaran P., Cheralathan M., Velraj R., Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system—An experimental study. Energy, 2015, 90: 807–813. https://doi.org/10.1016/j.energy.2015.07.113.

    Article  Google Scholar 

  54. Asker M., Ganjehsarabi H., Coban M.T., Numerical investigation of inward solidification inside spherical capsule by using temperature transforming method. Ain Shams Engineering Journal, 2016, 9(4): 537–547. https://doi.org/10.1016/j.asej.2016.02.009.

    Article  Google Scholar 

  55. Ismail K.A.R., Moura L.F., Lago T., Lino F.A.M., Nobrega C., Experimental study of fusion and solidification of phase change material (PCM) in spherical geometry. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2016, Volume 1, Spain.

  56. Liu M.J., Fan L.W., Zhu Z.Q., Feng B., Zhang H.C., Zeng Y., A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules. Applied Thermal Engineering, 2016, 108: 1200–1205. https://doi.org/10.1016/j.applthermaleng.2016.08.027.

    Article  Google Scholar 

  57. Pop O., Tutunaru L.F., Balan M., Numerical model for solidification and melting of PCM encapsulated in spherical shells. Energy Procedia, 2017, 112: 336–343. https://doi.org/10.1016/j.egypro.2017.03.1060.

    Article  Google Scholar 

  58. Ehms J., Oliveski R., Rocha L., Biserni C., Theoretical and numerical analysis on phase change materials (PCM): A case study of the solidification process of erythritol in spheres. International Journal of Heat and Mass Transfer, 2018, 119: 523–532. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.124.

    Article  Google Scholar 

  59. Nazififard M., Badri M.S., Najafzadeh S., Jowkar H., Visualization of phase change material solidification process in spherical geometry. The 26th Annual International Conference of Iranian Society of Mechanical Engineers-ISME2018, 24–26 April, 2018, School of Mechanical Engineering, Semnan University, Semnan, Iran.

    Google Scholar 

  60. Loem S., Deethayat T., Asanakham A., Kiatsiriroat T., Thermal characteristics on melting/solidification of low temperature PCM balls packed bed with air charging/discharging. Case Studies in Thermal Engineering, 2019, 14: 100431. https://doi.org/10.1016/j.csite.2019.100431

    Article  Google Scholar 

  61. Mawire A., Lentswe K., Okello D., Lugolole R., Nyeinga K., Shobo A., Dynamic thermal performance of four encapsulated PCM spheres for domestic medium temperature applications. Energy Procedia, 2019, 158: 4375–4382. https://doi.org/10.1016/j.egypro.2019.01.781

    Article  Google Scholar 

  62. Vikram M.P., Kumaresan V., Christopher S., Velraj R., Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications. International Journal of Refrigeration, 2019, 100: 454–462. https://doi.org/10.1016/j.ijrefrig.2018.11.025.

    Article  Google Scholar 

  63. Gao J.Y., Zhang X.D., Fu J.H., Yang X.H., Liu J., Numerical investigation on integrated thermal management via liquid convection and phase change in packed bed of spherical low melting point metal macrocapsules. International Journal of Heat and Mass Transfer, 2020, 150: 119366. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119366.

    Article  Google Scholar 

  64. Lago T.G.S., Ismail K.A.R., Lino F.A.M., Arabkoohsar A., Experimental correlations for the solidification and fusion times of PCM encapsulated in spherical shells. Experimental Heat Transfer, 2020, 33(5): 440–454. https://doi.org/10.1080/08916152.2019.1656301.

    Article  ADS  Google Scholar 

  65. Gao X., Zhang W., Fang Z., Hou X., Zhang X., Analysis of melting and solidification processes in the phase-change device of an energy storage interconnected heat pump system. AIP Advances, 2020, 10: 055021. https://doi.org/10.1063/5.0006280.

    Article  ADS  Google Scholar 

  66. Lipnicki Z., Malolepszy T., Gortych M., Grabas P., Simple analytical and experimental method of solidification PCM material inside a spherical capsule. International Communications in Heat and Mass Transfer, 2022, 135: 106083. https://doi.org/10.1016/j.icheatmasstransfer.2022.106083.

    Article  Google Scholar 

  67. Sarbu I., Sebarchievici C., A comprehensive review of thermal energy storage. Sustainability, 2018, 10(1): 191. https://doi.org/10.3390/su10010191.

    Article  Google Scholar 

  68. Bilir L., Ilken Z., Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Applied Thermal Engineering, 2005, 25: 1488–1502. https://doi.org/10.1016/j.applthermaleng.2004.10.005.

    Article  Google Scholar 

  69. Kalaiselvam S., Veerappan M., Aaronb A.A., Iniyan S., Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. International Journal of Thermal Sciences, 2008, 47: 858–874. https://doi.org/10.1016/j.ijthermalsci.2007.07.003.

    Article  Google Scholar 

  70. Lu J.F., Ding J., Yang J.P., Solidification and melting behaviors and characteristics of molten salt in cold filling pipe. International Journal of Heat and Mass Transfer, 2010, 53: 1628–1635. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.033.

    Article  MATH  Google Scholar 

  71. Rajeev K., Das S., A numerical study for inward solidification of a liquid contained in cylindrical and spherical vessel. Thermal Science, 2010, 14(2): 365–372. https://doi.org/10.2298/TSCI1002365R.

    Article  Google Scholar 

  72. Sridharan P., Aspect ratio effect on melting and solidification during thermal energy storage. University of South Florida, 2013. https://scholarcommons.usf.edu/etd/4777/.

  73. Motahar S., Khodabandeh R., Experimental study on the melting and solidification of a phase change material enhanced by heat pipe. International Communications in Heat and Mass Transfer, 2016, 73: 1–6. https://doi.org/10.1016/jicheatmasstransfer.2016.02.012.

    Article  Google Scholar 

  74. Alexiadis A., Ghraybehb S., Qiaoc G., Natural convection and solidification of phase-change materials in circular pipes: A SPH approach. Computational Materials Science, 2018, 150: 475–483. https://doi.org/10.1016/j.commatsci.2018.04.037.

    Article  Google Scholar 

  75. Stamatiou A., Maranda S., Eckl F., Schuetz P., Fischer L., Worlitschek J., Quasi-stationary modelling of solidification in a latent heat storage comprising a plain tube heat exchanger. Journal of Energy Storage, 2018, 20: 551–559. https://doi.org/10.1016/j.est.2018.10.019.

    Article  Google Scholar 

  76. Han X., Kang Z., Tian X., Wang L., Experimental observations on the interface front of phase change material inside cylindrical cavity. Energy Storage, 2019, 1(1): e36. https://doi.org/10.1002/est2.36.

    Article  Google Scholar 

  77. Izgi B., Arslan M., Numerical analysis of solidification of PCM in a closed vertical cylinder for thermal energy storage applications. Heat and Mass Transfer, 2020, 56: 2909–2922. https://doi.org/10.1007/s00231-020-02911-z.

    Article  ADS  Google Scholar 

  78. Olfian H., Ajarostaghi S.S.M., Farhadi M., Ramiar A., Melting and solidification processes of phase change material in evacuated tube solar collector with U-shaped spirally corrugated tube. Applied Thermal Engineering, 2021, 182: 116149. https://doi.org/10.1016/j.applthermaleng.2020.116149.

    Article  Google Scholar 

  79. Lacroix M., Study of heat transfer behaviour of a latent heat thermal energy storage unit with a finned tube. International Journal of Heat Mass Transfer, 1993, 36(8): 2083–2092. https://doi.org/10.1016/S0017-9310(05)80139-5.

    Article  Google Scholar 

  80. Agyenim F., Hewitt N., Eames P., Smyth M., A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 2010, 14: 615–628. https://doi.org/10.1016/j.rser.2009.10.015.

    Article  Google Scholar 

  81. Trp A., An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Solar Energy, 2005, 79: 648–660. https://doi.org/10.1016/j.solener.2005.03.006.

    Article  ADS  Google Scholar 

  82. Long J.Y., Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Solar Energy, 2008, 82: 977–985. https://doi.org/10.1016/j.solener.2008.05.006.

    Article  Google Scholar 

  83. Ezan M.A., Ozdogan M., Erek A., Experimental study on charging and discharging periods of water in a latent heat storage unit. International Journal of Thermal Sciences, 2011, 50: 2205–2219. https://doi.org/10.1016/j.ijthermalsci.2011.06.010.

    Article  Google Scholar 

  84. Lipnicki Z., Weigand B., An experimental and theoretical study of solidification in a free-convection flow inside a vertical annular enclosure. International Journal of Heat and Mass Transfer, 2012, 55: 655–664. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.044.

    Article  MATH  Google Scholar 

  85. Longeon M., Soupart A., Fourmigué J.F., Bruch A., Marty P., Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 2013, 112: 175–184. https://doi.org/10.1016/j.apenergy.2013.06.007.

    Article  Google Scholar 

  86. Avci M., Yazici M.Y., Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit. Energy Conversion and Management, 2013, 73: 271–277. https://doi.org/10.1016/j.enconman.2013.04.030.

    Article  Google Scholar 

  87. Solomon G.R., Karthikeyan S., Velraj R., Sub cooling of PCM due to various effects during solidification in a vertical concentric tube thermal storage unit. Applied Thermal Engineering, 2013, 52: 505–511. https://doi.org/10.1016/j.applthermaleng.2012.12.030.

    Article  Google Scholar 

  88. Jesumathy S.P., Udayakumar M., Suresh S., Jegadheeswaran S., An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1298–1306. https://doi.org/10.1016/j.jtice.2014.03.007.

    Article  Google Scholar 

  89. Hosseini M.J., Rahimi M., Bahrampoury R., Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 2014, 50: 128–136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008.

    Article  Google Scholar 

  90. Ismail K.R., Lino F.M., Da Silva R.R., De Jesus A.B., Paixão L.C., Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube. International Journal of Thermal Sciences, 2014, 75: 184–193. https://doi.org/10.1016/j.ijthermalsci.2013.08.008

    Article  Google Scholar 

  91. Kibria M.A., Anisur M.R., Mahfuz M.H., Saidur R., Metselaar I.H.S.C., Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, 2014, 53: 71–78. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.023.

    Article  Google Scholar 

  92. Yazici M.Y., Avci M., Aydin O., Akgun M., On the effect of eccentricity of a horizontal tube-in-shell storage unit on solidification of a PCM. Applied Thermal Engineering, 2014, 64: 1–9. https://doi.org/10.1016/j.applthermaleng.2013.12.005.

    Article  Google Scholar 

  93. Bechiri M., Mansouri K., Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system. Renewable Energy, 2015, 74: 825–838. https://doi.org/10.1016/j.renene.2014.09.010.

    Article  Google Scholar 

  94. Agarwal A., Sarviya R.M., An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. Engineering Science and Technology, an International Journal, 2016, 19(1): 619–631. https://doi.org/10.1016/j.jestch.2015.09.014.

    Article  Google Scholar 

  95. Seddegh S., Wang X., Henderson A.D., A comparative study of thermal behavior of a horizontal and vertical shell-and-tube energy storage using phase change materials. Applied Thermal Engineering, 2016, 93: 348–358. https://doi.org/10.1016/j.applthermaleng.2015.09.107.

    Article  Google Scholar 

  96. Wang Y., Wang L., Xie N., Lin X., Chen H., Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit. International Journal of Heat and Mass Transfer, 2016, 99: 770–781. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.125.

    Article  Google Scholar 

  97. Ma Z., Bao H., Roskilly A.P., Study on solidification process of sodium acetate trihydrate for seasonal solar thermal energy storage. Solar Energy Materials and Solar Cells, 2017, 172: 99–107. https://doi.org/10.1016/j.solmat.2017.07.024.

    Article  Google Scholar 

  98. Riahi S., Saman W.Y., Bruno F., Belusko M., Tay N.H.S., Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system. Applied Energy, 2017, 191: 276–286. https://doi.org/10.1016/j.apenergy.2017.01.091.

    Article  Google Scholar 

  99. Riahi S., Saman W.Y., Bruno F., Belusko M., Tay N.H.S., Comparative study of melting and solidification processes in different configurations of shell and tube high temperature latent heat storage system. Solar Energy, 2017, 150: 363–374. https://doi.org/10.1016/j.solener.2017.04.061.

    Article  ADS  Google Scholar 

  100. Tao Y.B., Liu Y.K., He Y.L., Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit. International Journal of Heat and Mass Transfer, 2017, 115: 99–107. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.098.

    Article  Google Scholar 

  101. Elmeriah A., Nehari D., Aichouni M., Thermo-convective study of a shell and tube thermal energy storage unit. Periodica Polytechnica Mechanical Engineering, 2018, 62(2): 101–109. https://doi.org/10.3311/PPme.10873.

    Google Scholar 

  102. Tehrani S.S.M., Diarce G., Taylor R.A., The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems. Solar Energy, 2018, 174: 489–501. https://doi.org/10.1016/j.solener.2018.09.048.

    Article  ADS  Google Scholar 

  103. Mehta D.S., Solanki K., Rathod M.K., Banerjee J, Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. Journal of Energy Storage, 2019, 23: 344–362. https://doi.org/10.1016/j.est.2019.03.007.

    Article  Google Scholar 

  104. Sodhi G.S., Jaiswal A.K., Vigneshwaran K., Muthukumar P., Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device. Energy Conversion and Management, 2019, 188: 381–397. https://doi.org/10.1016/j.enconman.2019.03.022.

    Article  Google Scholar 

  105. Andrzejczyk R., Kozak P., Muszynski T., Experimental investigations on the influence of coil arrangement on melting/solidification processes. Energies, 2020, 13: 6334. https://doi.org/10.3390/en13236334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Dhaidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaidan, N., Hashim, H., Abbas, A. et al. Discharging of PCM in Various Shapes of Thermal Energy Storage Systems: A Review. J. Therm. Sci. 32, 1124–1154 (2023). https://doi.org/10.1007/s11630-023-1793-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1793-z

Keywords

Navigation