Skip to main content

The Effect of Geometric Parameters of a Container on Thermal Charging of Latent Heat Thermal Energy Storage System: A Review

  • Conference paper
  • First Online:
Advances in Mechanical and Materials Technology (EMSME 2020)

Abstract

The latent heat thermal energy storage (LHTES) by phase change material (PCM) is more promising than supplementary technologies due to elevated heat capacity per unit volume and small volume change during heat exchange. The efficiency of the LHTES system mainly determines upon the thermophysical properties of PCM, operating conditions, and geometric parameters of a heat exchanger or PCM container. Geometric parameters like shape, size, height, type, and orientation of heat exchanger have greatly influenced the heat convey rate in between heat convey fluid and PCM. The tube and shell-type heat exchangers are most widely studied and analyzed by the researchers. This review presents and summarizes the different types of PCM container/heat exchanger which are used in the case of PCM along with geometric heat transfer enhancement techniques like fins, heat pipes, and multiple tubes, etc. The main focus is on the melting behavior of PCM interior the containers/heat exchangers which is an important variable to magnify the thermal charging capabilities of the LHTES system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sattari H, Mohebbi A et al (2017) CFD simulation of melting process of phase change materials (PCMs) in a spherical capsule. Int J Refrig 73:209–218

    Article  Google Scholar 

  2. Kalapala L, Devanuri J (2019) Parametric investigation to assess the melt fraction and melting time for a latent heat storage material based vertical shell and tube heat exchanger. Sol Energy 193:360–371

    Article  Google Scholar 

  3. Karami R, Kamkari B (2020) Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems. Energy Convers Manage 210:112679

    Article  Google Scholar 

  4. Tan F (2008) Constrained and unconstrained melting inside a sphere. Int Commun Heat Mass Transfer 35:466–475

    Article  Google Scholar 

  5. Li W, Li S et al (2017) Numerical study on melt fraction during melting of phase change material inside a sphere. Int J Hydrogen Energy 42:18232–18239

    Article  Google Scholar 

  6. Kamkari B, Shokouhmand H (2014) Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int J Heat Mass Transf 72:186–200

    Article  Google Scholar 

  7. Kamkari B, Shokouhmand H (2014) Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int J Heat Mass Transf 78:839–851

    Article  Google Scholar 

  8. Haddad Z, Iachachene F (2019) Melting characteristics of organic phase change material in a wavy trapezoidal cavity. J Mol Liquids, 112132

    Google Scholar 

  9. Seddegh S, Wang X et al (2016) A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng 93:348–358

    Article  Google Scholar 

  10. Mahdi M, Mahood H et al (2019) Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit. Thermal Sci Eng Progr 11:40–49

    Article  Google Scholar 

  11. Bechiri M, Mansouri K et al (2019) Study of heat and fluid flow during melting of PCM inside vertical cylindrical tube. Int J Therm Sci 135:235–246

    Article  Google Scholar 

  12. Saraswat A, Bhattacharjee R et al (2017) Investigation of diffusional transport of heat and its enhancement. Appl Therm Eng 111:1611–1621

    Article  Google Scholar 

  13. Joybari M, Seddegh S et al (2019) Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renew Energy 140:234–244

    Article  Google Scholar 

  14. Hosseini M, Rahimi M et al (2014) Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass Transfer 50:128–136

    Article  Google Scholar 

  15. Sodhi G, Jaiswal A et al (2019) Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device. Energy Convers Manage 188:381–397

    Article  Google Scholar 

  16. Al I, Khanna S et al (2019) An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. J Energy Storage 23:57–68

    Article  Google Scholar 

  17. Mahdi Mustafa S, Mahood Hameed B et al (2019) Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit. Appl Therm Eng 11:40–49

    Google Scholar 

  18. Mao Q, Liu N et al (2019) A novel shell-and-tube thermal energy storage tank: Modeling and investigations of thermal performance. Appl Therm Eng 159:113964

    Article  Google Scholar 

  19. Seddegh S, Cao F et al (2017) Comparison of heat transfer between cylindrical and conical vertical shell-and-tube LHTES systems. Appl Therm Eng

    Google Scholar 

  20. Mahdi M, Mahdi J et al (2020) Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube. Energy Convers Manage 203:112238

    Article  Google Scholar 

  21. Yang X, Lu Z et al (2017) Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Appl Energy 202:558–570

    Article  Google Scholar 

  22. Mahood H, Mahdi M et al (2020) Numerical investigation on the effect of fin design on the melting of phase change material in a horizontal shell and tube thermal energy storage. J Energy Storage 29:101331

    Article  Google Scholar 

  23. Bhagat K, Prabhakar M et al (2018) Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. J Energy Storage 19:135–144

    Article  Google Scholar 

  24. Nie C, Deng S et al (2020) Numerical investigation of PCM in a TES unit with fins: consecutive charging and discharging. J Energy Storage 29:101319

    Article  Google Scholar 

  25. Reay D, Kew P et al (2013) Heat pipes: theory, design and applications. Butterworth Heinemann

    Google Scholar 

  26. Mahdavi M, Tiari S et al (2020) A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system. J Energy Storage 27:101086

    Article  Google Scholar 

  27. Motahar S, Khodabandeh R et al (2016) Experimental study on the melting and solidification of a phase change material enhanced by heat pipe. Int Commun Heat Mass Transfer 73:1–6

    Article  Google Scholar 

  28. Sharifi N, Wang S et al (2012) Heat pipe-assisted melting of a phase change material. Int J Heat Mass Transf 55:3458–3469

    Article  Google Scholar 

  29. Fadl M, Eames P (2019) A comparative study of the effect of varying wall heat flux on melting characteristics of phase change material RT44HC in rectangular test cells. Int J Heat Mass Transf 141:731–747

    Article  Google Scholar 

  30. Zivkovic B, Fujii I (2001) Analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Sol Energy 70:51–61

    Article  Google Scholar 

  31. Vyshak N, Jilani G (2007) Numerical analysis of latent heat thermal energy storage system. Energy Convers Manage 48:2161–2168

    Article  Google Scholar 

  32. Seddegh S, Wang X (2017) Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 137:69–82

    Article  Google Scholar 

  33. Esapour M, Hosseini M (2016) Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Appl Therm Eng 109:351–363

    Article  Google Scholar 

  34. Zayed M, Zhao J et al (2020) Recent progress in phase change materials storage containers: geometries, design considerations and heat transfer improvement methods. J Energy Storage 30:101341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, J., Singh, P., Kumar, R. (2022). The Effect of Geometric Parameters of a Container on Thermal Charging of Latent Heat Thermal Energy Storage System: A Review. In: Govindan, K., Kumar, H., Yadav, S. (eds) Advances in Mechanical and Materials Technology . EMSME 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-2794-1_103

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2794-1_103

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2793-4

  • Online ISBN: 978-981-16-2794-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics