Skip to main content
Log in

Experimental Study of Heat Transfer and Film Cooling Performance of Upstream Ejected Coolant on a Turbine Endwall

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

An upstream coolant injection that is different from the known leakage flow was introduced to protect the turbine endwall. This coolant is ejected tangentially from a row of cylindrical holes situated at the side of a backward-facing step. In this experiment, the effects of mass flow ratio and leakage slot width on the endwall heat transfer characteristics were investigated. The dimensionless heat transfer coefficient (Nu) and adiabatic film cooling effectiveness (η) on an axisymmetric turbine endwall were measured by the stable-state thermochromic liquid crystal (TLC) technique and the pressure sensitive paint (PSP) technique, respectively. Three mass flow ratios (MFR) of 0.64%, 0.85%, and 1.07%, as well as two leakage slot widths (W) of 3.93 mm, and 7.86 mm were considered. Results indicate that the injection film suppresses the strength of the passage vortex, which leads to the coolant covering almost the entire endwall. This result is more evident for the higher MFR cases, meanwhile, the corresponding averaged film cooling effectiveness is increased with the enhancement of the MFR. However, the case with a higher MFR produces a higher heat transfer coefficient distribution, especially in the region close to the leakage slot edge. Besides, when the W is lower, the endwall presents a higher η and a lower Nu for all the cases, which can guide the optimal design of the endwall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

True chord length or oxygen concentration

C ax :

Axial chord length

D :

Hole diameter

h :

Heat transfer coefficient

I :

Light intensity

L :

Length of hole

MFR:

Coolant-to-mainstream mass flow ratio MFR/%=qc/qm

Nu :

Nusselt number

P :

Pressure or Pitch

PS:

Pressure surface

q c :

Coolant mass flux

q con :

Heat conduction loss

q m :

Mainstream mass flux

q net :

Net heat flux

q rad :

Radiation loss

q tot :

Total heat flux

Re :

Reynolds number

S :

Span

SS:

Suction surface

T :

Temperature

V :

Velocity

W :

Leakage slot width

X :

Axial direction

Y :

Pitchwise direction

Z :

Radial direction

η :

Adiabatic film cooling effectiveness

η ave :

Pitchwise averaged cooling effectiveness

ρ :

Fluid density

θ :

Dimensionless temperature

aw:

Adiabat condition

c:

Coolant property

w:

Endwall surface property

0:

Reference condition

∞:

Mainstream property \(\theta = {{T-{T_\infty}} \over {{T_{\rm{c}}}-{T_\infty}}}\)

References

  1. Lefebvre A., Gas turbine combustion: alternative fuels and emissions. CRC Press, New York, 2010.

    Book  Google Scholar 

  2. Langston L.S., Crossflows in a turbine cascade passage. Journal of Engineering for Power, 1980, 102(4): 866–874.

    Article  Google Scholar 

  3. Sharma J.P., Butler T.L., Predictions of endwall losses and secondary flows in axial flow turbine cascades. ASME Journal of Turbomachinery, 1987, 109(2): 229–236.

    Article  Google Scholar 

  4. Wang, H.P., Olson, S.J., Goldstein, R.J., Eckert, E.R.G., Flow visualization in a linear turbine cascade of high performance turbine blades. ASME Journal of Turbomachinery, 1997, 119(1): 1–8.

    Article  Google Scholar 

  5. Pu J., Yu J., Wang J.H., Yang W.S., Zhang Z.Q., Wang L., An experimental investigation of secondary flow characteristics in a linear turbine cascade with upstream converging slot-holes using TR-PIV. Experimental Thermal and Fluid Science, 2014, 59: 56–71.

    Article  Google Scholar 

  6. Knost D.G., Thole K.A., Adiabatic effectiveness measurements of endwall film cooling for a first stage vane. ASME Journal of Turbomachinery, 2005, 127(2): 297–305.

    Article  Google Scholar 

  7. Li X.Y., Ren J., Jiang H.D., Influence of different film cooling arrangements on endwall cooling. International Journal of Heat and Mass Transfer, 2016, 102: 348–359.

    Article  Google Scholar 

  8. Francesca S., Giovanni T., Effect of discrete-hole arrangement on film-cooling effectiveness for the endwall of a turbine blade cascade. Applied Thermal Engineering, 2015, 91: 507–514.

    Article  Google Scholar 

  9. Wang X., Xu H.Z., Wang J.H., Song W., Wang M., Multi-objective optimization of discrete film hole arrangement on a high pressure turbine endwall with conjugate heat transfer simulations. International Journal of Heat and Fluid Flow, 2019, 78: 108428.

    Article  Google Scholar 

  10. Zhang J., Liu C.L., Zhang L., Zhou T.L., Li L., Guo Y.H., Experimental study of film cooling characteristics of annular cascade endwall with a partitioned film cooling layout. International Journal of Thermal Sciences, 2022, 182: 107821.

    Article  Google Scholar 

  11. Friedrichs S., Hodson H.P., Dawes W.N., Aerodynamic aspects of endwall film-cooling. ASME Journal of Turbomachinery, 1997, 119(4): 786–793.

    Article  Google Scholar 

  12. Mensch A.E., Thole K.A., Effects of non-axisymmetric endwall contouring and film cooling on the passage flowfield in a linear turbine cascade. Experiments in Fluids, 2016, 57(1): 1.

    Article  ADS  Google Scholar 

  13. Ghopa W.A.W., Harun Z., Funazaki K., Miura T., Aero-thermal performances of leakage flow injection from the endwall slot in a linear cascade of high-pressure turbine. Journal of Thermal Science, 2015, 24(1): 49–57.

    Article  ADS  Google Scholar 

  14. Zhang L.Z., Hee K.M., Turbine nozzle endwall inlet film cooling the effect of a back-facing step. ASME, GT2003-38319. DOI: https://doi.org/10.1115/GT2003-38319

  15. Xiao X.T., Wang P., Du Q., Xu Q.Z., Liu J., Zhu J.Q., Numerical investigations of film cooling characteristics of interrupted slot and trench holes on a vane endwall. Journal of Thermal Science, 2021, 30(3): 1010–1024.

    Article  ADS  Google Scholar 

  16. Bai B., Li Z.G., Li J., et al., Effects of upstream step geometry on axisymmetric converging vane endwall heat transfer and film cooling at transonic conditions. ASME, GT2020-16154. DOI: https://doi.org/10.1115/GT2020-16154

  17. Luke L., Ridge S., Shuo M., et al., The effect of step misalignment on purge flow cooling of nozzle guide vane at transonic conditions. ASME Journal of Turbomachinery, 2020, 142(10): 101004.

    Article  Google Scholar 

  18. Gunther M., Christian L., Martin B., Robert K., Turbine vane endwall film cooling effectiveness of different purge slot configurations in a linear cascade. ASME Journal of Turbomachinery, 2020, 142(3): 031008.

    Article  Google Scholar 

  19. Zhang Y., Yuan X., Turbine endwall film cooling with combustor-turbine interface gap leakage flow: effect of incidence angle. Journal of Thermal Science, 2013, 22(2): 135–144.

    Article  ADS  Google Scholar 

  20. Yao Y.J., Zhu P.Y., Tao Z., Song L.M., Li J., Experimental study on the effects of slot jet on film cooling performance in the cascade endwall with purge flow. ASME, GT2019-90667. DOI: https://doi.org/10.1115/GT2019-90667

  21. Thrift A.A., Thole K.A., Hada S., Effects of orientation and position of the combustor-turbine interface on the cooling of a vane endwall. ASME Journal of Turbomachinery, 2012, 134(6): 061019.

    Article  Google Scholar 

  22. Tao Z., Yao Y.J., Zhu P.Y., Song L.M., Li J., Experimental and numerical study on film cooling effectiveness of an annular cascade endwall with different slot configuration. International Journal of Thermal Sciences, 2020, 158: 106517.

    Article  Google Scholar 

  23. Thrift A.A., Thole K.A., Influence of flow injection angle on a leading-edge horseshoe vortex. International Journal of Heat and Mass Transfer, 2012, 55(17): 4651–4664.

    Article  Google Scholar 

  24. Kim J.J., Sohn H.S., Choi S.Y, et al., Effect of misalignment at 2nd vane endwall on heat transfer with purge flow. International Journal of Heat and Mass Transfer, 2021, 170: 121034.

    Article  Google Scholar 

  25. Xu Q.Z., Du Q., Wang P., Liu J., Liu G., Computational investigation of film cooling and secondary flow on turbine endwall with coolant injection from the upstream interrupted slot. International Journal of Heat and Mass Transfer, 2018, 123: 285–296.

    Article  Google Scholar 

  26. Ye L., Liu C.L., Du K., Chen L., Wang Y.M., Zhu A.D., Influences of groove configuration and density ratio on grooved leading-edge showerhead film cooling using the pressure sensitive paint measurement technique. International Journal of Heat and Mass Transfer, 2022, 190: 122641.

    Article  Google Scholar 

  27. Ye L., Liu C.L., Zhu A.D., Zhang F., Zhang C.X., Cooling characteristics of the trailing-edge slot downstream from internal multi-ribbed channel. International Journal of Heat and Mass Transfer, 2022, 183: 122057.

    Article  Google Scholar 

  28. Zhang B.L., Yao C.Y., Zhu H.R., Liu C.L., Stunden B., Experimental study on film cooling performance of a turbine blade tip with a trapezoidal slot cooling scheme in transonic flow using PSP technique. Experimental Thermal and Fluid Science, 2022, 130: 110513.

    Article  Google Scholar 

  29. Kline S.J., McClintock, F.A., Describing uncertainties in single-sample experiments. Mechanical Engineering, 1953, 75: 3–8.

    Google Scholar 

  30. Robert J.M., Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1988, 1(1): 3–17.

    Article  Google Scholar 

  31. Thrift A.A., Thole K.A., Hada S., Effects of an axisymmetric contoured endwall on a nozzle guide vane: convective heat transfer measurements. ASME Journal of Turbomachinery, 2011, 133(4): 041008.

    Article  Google Scholar 

Download references

Acknowledge

The authors acknowledge gratefully the financial support from the National Natural Science Foundation of China (Grant No. U2241268) and the National Science and Technology Major Project (Grant No. J2019-III-0019-0063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunliang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, C., Zhang, L. et al. Experimental Study of Heat Transfer and Film Cooling Performance of Upstream Ejected Coolant on a Turbine Endwall. J. Therm. Sci. 32, 718–728 (2023). https://doi.org/10.1007/s11630-023-1754-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1754-6

Keywords

Navigation