Skip to main content
Log in

Forced Convection Heat Transfer in Porous Structure: Effect of Morphology on Pressure Drop and Heat Transfer Coefficient

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

A light-weight structure with sufficient mechanical strength and heat transfer performance is increasingly required for some thermal management issues. The porous structure with the skeleton supporting the ambient stress and the pores holding the flowing fluid is considered very promising, attracting significant scientific and industrial interest over the past few decades. However, due to complicated morphology of the porous matrices and thereby various performance of the pressure drop and heat transfer coefficients (HTC), the comprehensive comparison and evaluation between different structures are largely unclear. In this work, recent researches on the efforts of forced convection heat transfer in light-weight porous structure are reviewed; special interest is placed in the open-cell foam, lattice-frame, structured packed bed, and wire-woven structures. Their experimental apparatus, morphological of the porous structures, effect of morphology on pressure drop and HTC, and further applications are discussed. The new method which measure morphology accurately should be paid more attention to develop more accuracy correlation. Also, the most research focused on low Reynolds number and existing structure, while very few researchers investigated the property of forced convection heat transfer in high velocity region and developed new porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

constant

a:

constant

b:

constant

c :

specific heat capacity/J·kg−1·K−1

c p :

specific heat capacity at constant pressure/J·kg−1·K−1

c1 :

constant

c2 :

constant

C :

inertia coefficient/m−1

d :

diameter/m

E 1 :

viscous coefficient for Eq. (39)/m2

E 2 :

inertia coefficient for Eq. (39)/m−1

F :

Forchheimer coefficient/m2

f :

friction factor

G:

Constant

H :

height/m

h :

heat transfer coefficient/W·m−2·K−1

K :

permeability coefficient/m2

k :

thermal conductive/W·m−1·K−1

l :

length/m

l′ :

addition length/m

Nu :

Nusselt number

n :

constant

PPC:

pores per centimeter

PPI:

pores per inch

Pr :

Prandtl number

Re :

Reynolds number

S cell :

unit cell length/m

S v-g :

geometric specific area/m2·m−3

S v :

specific surface area/m2·m−3

T :

temperature/K

u :

velocity/m·s−1

V :

volume/m3

α :

constant

β :

constant

l:

liquid

ε :

porosity

μ :

dynamic velocity/Pa·s

χ :

tortuosity

ρ :

density/kg·m−1

c:

cell

D:

Darcy

f:

foam of fluid

h:

hydraulic

i:

inner

o:

open or outlet

p:

pore or particle

s:

solid or strut

t:

total

v:

volume

w:

window

References

  1. Albanakis C., Yakinthos K., Kritikos K., Missirlis D., The effect of heat transfer on the pressure drop through a heat exchanger for aero engine applications. Applied Thermal Engineering, 2009, 29(4): 634–644.

    Article  Google Scholar 

  2. Wen J., Huang H.R., Li H.W., Xu G.Q., Fu, Y.C., Thermal and hydraulic performance of a compact plate finned tube air-fuel heat exchanger for aero-engine. Applied Thermal Engineering, 2017, 126: 920–928.

    Article  Google Scholar 

  3. Fu Y.X., He Z.X., Mo D.C., Lu S.S., Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Applied Thermal Engineering, 2014, 66(1–2): 493–498.

    Article  Google Scholar 

  4. Kim I.H., No H.C., Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations. Applied Thermal Engineering, 2011, 31(17–18): 4064–4073.

    Article  Google Scholar 

  5. Aquaro D., Pieve M., High temperature heat exchangers for power plants: Performance of advanced metallic recuperators. Applied Thermal Engineering, 2007, 27(2–3): 389–400.

    Article  Google Scholar 

  6. Zhang L.X., Yang L., Wang J.Q., Zhao J.F., Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate. Chemical Engineering Journal, 2017, 308: 40–49.

    Article  Google Scholar 

  7. Fuller A.J., Kim T., Hodson H.P., Lu T.J., Measurement and interpretation of the heat transfer coefficients of metal foams. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2005, 219(2): 183–191.

    Article  Google Scholar 

  8. Joo J.H., Kang K.J., Kim T., Lu T.J., Forced convective heat transfer in all metallic wire-woven bulk Kagome sandwich panels. International Journal of Heat and Mass Transfer, 2011, 54(25–26): 5658–5662.

    Article  Google Scholar 

  9. Kim T., Hodson H.P., Lu T.J., Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material. International Journal of Heat and Mass Transfer, 2004, 47(6–7): 1129–1140.

    Article  Google Scholar 

  10. Zhao C. Y., Kim T., Lu T. J., Hodson, H. P., Thermal transport in high porosity cellular metal foams. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 309–317.

    Article  Google Scholar 

  11. Zheng K.C., Wen Z., Wang Z.S., Lou G.F., et al., Review on forced convection heat transfer in porous media. Acta Physica Sinica, 2012, 61(1): 014401–1-11.

    Article  Google Scholar 

  12. Mandi R.A., Mohammed H.A., Munisamy K.M., Saeid N.H., Review of convection heat transfer and fluid flow in porous media with nanofluid. Renewable & Sustainable Energy Reviews, 2015, 41: 715–734.

    Article  Google Scholar 

  13. Han X.H., Wang Q., Park Y.G., T’Joen C., et al., A review of metal foam and metal matrix composites for heat exchangers and heat sinks. Heat Transfer Engineering, 2012, 33(12): 991–1009.

    Article  ADS  Google Scholar 

  14. Mancin S., Diani A., Doretti L., Rossetto L., R134a and R1234ze(E) liquid and flow boiling heat transfer in a high porosity copper foam. International Journal of Heat and Mass Transfer, 2014, 74: 77–87.

    Article  Google Scholar 

  15. Abadi G.B., Moon C., Kim K.C., Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels. Applied Thermal Engineering, 2016, 102: 423–431.

    Article  Google Scholar 

  16. Kim D.Y., Kim K.C., An experimental study on the thermal and hydraulic characteristics of open-cell nickel and copper foams for compact heat exchangers. International Journal of Heat and Mass Transfer, 2019, 130: 162–174.

    Article  Google Scholar 

  17. Kim T., Zhao C.Y., Lu T.J., Hodson H.P., Convective heat dissipation with lattice-frame materials. Mech Mater, 2004, 36(8): 767–780.

    Article  Google Scholar 

  18. Mancin S., Zilio C., Rossetto L., Cavallini A., Heat Transfer Performance of Aluminum Foams. Journal of Heat Transfer-transactions of Asme, 2011, 133(6): 060904–1–9.

    Article  Google Scholar 

  19. Mancin S., Zilio C., Cavallini A., Rossetto L., Heat transfer during air flow in aluminum foams. International Journal of Heat and Mass Transfer, 2010, 53(21–22): 4976–4984.

    Article  MATH  Google Scholar 

  20. Mancin S., Zilio C., Cavallini A., Rossetto L., Pressure drop during air flow in aluminum foams. International Journal of Heat and Mass Transfer, 2010, 53(15–16): 3121–3130.

    Article  MATH  Google Scholar 

  21. Mancin S., Zilio C., Diani A., Rossetto L., Air forced convection through metal foams: Experimental results and modeling. International Journal of Heat and Mass Transfer, 2013, 62: 112–123.

    Article  Google Scholar 

  22. Dietrich B., Heat transfer coefficients for solid ceramic sponges — Experimental results and correlation. International Journal of Heat and Mass Transfer, 2013, 61: 627–637.

    Article  Google Scholar 

  23. Dietrich B., Schabel W., Kind M., Martin H., Pressure drop measurements of ceramic sponges-Determining the hydraulic diameter. Chemical Engineering Science, 2009, 64(16): 3633–3640.

    Article  Google Scholar 

  24. Wallenstein M., Kind M., Dietrich B., Radial two-phase thermal conductivity and wall heat transfer coefficient of ceramic sponges — Experimental results and correlation. International Journal of Heat and Mass Transfer, 2014, 79: 486–495.

    Article  Google Scholar 

  25. Moreira E.A., Innocentini M.D. M., Coury J.R., Permeability of ceramic foams to compressible and incompressible flow. Journal of the European Ceramic Society, 2004, 24(10–11): 3209–3218.

    Article  Google Scholar 

  26. Moreira E.A., Coury J.R., The influence of structural parameters on the permeability of ceramic foams. Brazilian Journal of Chemical Engineering, 2004, 21(1): 23–33.

    Article  Google Scholar 

  27. Giani L., Groppi G., Tronconi E., Mass-transfer characterization of metallic foams as supports for structured catalysts. Industrial & Engineering Chemistry Research, 2005, 44(14): 4993–5002.

    Article  Google Scholar 

  28. Xia X.L., Chen X., Sun C., Li Z.H., Liu B., Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams. International Journal of Heat and Mass Transfer, 2017, 106: 83–90.

    Article  Google Scholar 

  29. Lacroix M., Nguyen P., Schweich D., Huu C.P., et al., Pressure drop measurements and modeling on SiC foams. Chemical Engineering Science, 2007, 62(12): 3259–3267.

    Article  Google Scholar 

  30. Dixit T., Ghosh I., An experimental study on open cell metal foam as extended heat transfer surface. Experimental Thermal and Fluid Science, 2016, 77: 28–37.

    Article  Google Scholar 

  31. Yan H.B., Yang X.H., Lu T.J., Xie G.N., Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core. Applied Thermal Engineering, 2017, 127: 1293–1304.

    Article  Google Scholar 

  32. Kurian R., Balaji C., Venkateshan S.P., Experimental investigation of near compact wire mesh heat exchangers. Applied Thermal Engineering, 2016, 108: 1158–1167.

    Article  Google Scholar 

  33. Nawaz K., Bock J., Jacobi A.M., Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions. Applied Thermal Engineering, 2017, 119: 222–232.

    Article  Google Scholar 

  34. T’Joen C., De Jaeger P., Huisseune H., Van Herzeele S., et al., Thermo-hydraulic study of a single row heat exchanger consisting of metal foam covered round tubes. International Journal of Heat and Mass Transfer, 2010, 53(15–16): 3262–3274.

    Article  Google Scholar 

  35. Chen K., Guo L.J., Xie X.D., Liu W.Z., Experimental investigation on enhanced thermal performance of staggered tube bundles wrapped with metallic foam. International Journal of Heat and Mass Transfer, 2018, 122: 459–468.

    Article  Google Scholar 

  36. Madani B., Topin F., Rigollet F., Tadrist L., Flow laws in metallic foams: Experimental determination of inertial and viscous contributions. Journal of Porous Media, 2007, 10(1): 51–70.

    Article  Google Scholar 

  37. Garrido G.I., Patcas F.C., Lang S., Kraushaar-Czarnetzki B., Mass transfer and pressure drop in ceramic foams: A description for different pore sizes and porosities. Chemical Engineering Science, 2008, 63(21): 5202–5217.

    Article  Google Scholar 

  38. Son K.N., Weibel J.A., Kumaresan V., Garimella S.V., Design of multifunctional lattice-frame materials for compact heat exchangers. International Journal of Heat and Mass Transfer, 2017, 115: 619–629.

    Article  Google Scholar 

  39. Dukhan N., Minjeur C.A., A two-permeability approach for assessing flow properties in metal foam. Journal of Porous Materials, 2011, 18(4): 417–424.

    Article  Google Scholar 

  40. Banhart J., Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 2001, 46(6): 559–632.

    Article  Google Scholar 

  41. Deng X., Wang J., Shuang D., Cao Y., Li F.L., Fabricating porous ceramic through direct foaming, three-dimensional printing and molten salt method. Materials Review, 2015, 29(5): 109–116.

    Google Scholar 

  42. Li J., Yang Q.M., Zhitornirsky I., Nickel foam-based manganese dioxide-carbon nanotube composite electrodes for electrochemical supercapacitors. Journal of Power Sources, 2008, 185(2): 1569–1574.

    Article  ADS  Google Scholar 

  43. Harte A.M., Fleck N.A., Ashby M.F., Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materialia, 1999, 47(8): 2511–2524.

    Article  ADS  Google Scholar 

  44. Bram M., Stiller C., Buchkremer H.P., Stover D., Baur H., High-porosity titanium, stainless steel, and superalloy parts. Advanced Engineering Materials, 2000, 2(4): 196–199.

    Article  Google Scholar 

  45. Liu P.S., Chen G.F., General introduction to porous materials. 2014, pp. 1–20.

  46. Pal L., Joyce M.K., Fleming P.D., A simple method for calculation of the permeability coefficient of porous media. Tappi Journal, 2006, 5(9): 10–16.

    Google Scholar 

  47. Schwartzwalder A.E., Sommer A.V., Method of making porous ceramic articles. U.S Patent office, 1963, pp. 90–94.

  48. Inayat A., Klumpp M., Lammermann M., Freund H., Schwieger W., Development of a new pressure drop correlation for open-cell foams based completely on theoretical grounds: Taking into account strut shape and geometric tortuosity. Chemical Engineering Journal, 2016, 287: 704–719.

    Article  Google Scholar 

  49. Grosse J., Dietrich B., Martin H., Kind M., et al., Volume image analysis of ceramic sponges. Chemical Engineering & Technology, 2008, 31(2): 307–314.

    Article  Google Scholar 

  50. Inayat A., Freund H., Zeiser T., Schwieger W., Determining the specific surface area of ceramic foams: The tetrakaidecahedra model revisited. Chemical Engineering Science, 2011, 66(6): 1179–1188.

    Article  Google Scholar 

  51. Boomsma K., Poulikakos D., Ventikos Y., Simulations of flow through open cell metal foams using an idealized periodic cell structure. International Journal of Heat and Fluid Flow, 2003, 24(6): 825–834.

    Article  Google Scholar 

  52. Xu W.G., Zhang H.T., Yang Z.M., Zhang J.S., Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials. Chemical Engineering Journal, 2008, 140(1–3): 562–569.

    Article  Google Scholar 

  53. Kumar P., Topin F., Micro-structural impact of different strut shapes and porosity on hydraulic properties of Kelvin-like metal foams. Transport in Porous Media, 2014, 105(1): 57–81.

    Article  Google Scholar 

  54. Kumar P., Topin F., Investigation of fluid flow properties in open cell foams: Darcy and weak inertia regimes. Chemical Engineering Science, 2014, 116: 793–805.

    Article  Google Scholar 

  55. Bonnet J.P., Topin F., Tadrist L., Flow laws in metal foams: Compressibility and pore size effects. Transport in Porous Media, 2008, 73(2): 233–254.

    Article  Google Scholar 

  56. Boomsma K., Poulikakos D., The effects of compression and pore size variations on the liquid flow characteristics in metal foams. Journal of Fluids Engineering-Transactions of the Asme, 2002, 124(1): 263–272.

    Article  Google Scholar 

  57. Lage J.L., Antohe B.V., Darcy’s experiments and the deviation to nonlinear flow regime. Journal of Fluids Engineering-Transactions of the Asme, 2000, 122(3): 619–625.

    Article  Google Scholar 

  58. Murilo D.M. Innocentini V.R.S., Alvaro M., Prediction of ceramic foams permeability using Ergun’s equation. Materials Research, 1999, 2(4): 283–289.

    Article  Google Scholar 

  59. Richardson J.T., Peng Y., Remue D., Properties of ceramic foam catalyst supports: pressure drop. Applied Catalysis a-General, 2000, 204(1): 19–32.

    Article  Google Scholar 

  60. Dukhan N., Patel P., Equivalent particle diameter and length scale for pressure drop in porous metals. Experimental Thermal and Fluid Science, 2008, 32(5): 1059–1067.

    Article  Google Scholar 

  61. Ahmed J., Pham-Huu C., Edouard D., A predictive model based on tortuosity for pressure drop estimation in ‘slim’ and ‘fat’ foams. Chemical Engineering Science, 2011, 66(20): 4771–4779.

    Article  Google Scholar 

  62. Huu T.T., Lacroix M., Huu C.P., Schweich D., Edouard D., Towards a more realistic modeling of solid foam: Use of the pentagonal dodecahedron geometry. Chemical Engineering Science, 2009, 64(24): 5131–5142.

    Article  Google Scholar 

  63. Diao K.K., Zhang L.P., Zhao Y.Y., Measurement of tortuosity of porous Cu using a diffusion diaphragm cell. Measurement, 2017, 110: 335–338.

    Article  ADS  Google Scholar 

  64. Le L.H., Zhang C., Ta D., Lou E., Measurement of tortuosity in aluminum foams using airborne ultrasound. Ultrasonics, 2010, 50(1): 1–5.

    Article  Google Scholar 

  65. Haussener S., Coray P., Lipinski W., Wyss P., Steinfeld A., Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing. Journal of Heat Transfer-Transactions of the Asme, 2010, 132(2): 023305–1-9.

    Article  Google Scholar 

  66. Bodla K.K., Murthy J.Y., Garimella S.V., Microtomography-based simulation of transport through open-cell metal foams. Numerical Heat Transfer Part a-Applications, 2010, 58(7): 527–544.

    Article  ADS  Google Scholar 

  67. Habisreuther P., Djordjevic N., Zarzalis N., Statistical distribution of residence time and tortuosity of flow through open-cell foams. Chemical Engineering Science, 2009, 64(23): 4943–4954.

    Article  Google Scholar 

  68. Letellier M., Fierro V., Pizzi A., Celzard A., Tortuosity studies of cellular vitreous carbon foams. Carbon, 2014, 80: 193–202.

    Article  Google Scholar 

  69. Duplessis P., Montillet A., Comiti J., Legrand J., Pressure-drop prediction for flow-through high-porosity metallic foams. Chemical Engineering Science, 1994, 49(21): 3545–3553.

    Article  Google Scholar 

  70. Bhattacharya A., Calmidi V.V., Mahajan R.L., Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017–1031.

    Article  MATH  Google Scholar 

  71. Vicente J., Topin F., Daurelle J.V., Open celled material structural properties measurement: From morphology to transport properties. Materials Transactions, 2006, 47(9): 2195–2202.

    Article  Google Scholar 

  72. Bianchi E., Heidig T., Visconti C.G., Groppi G., et al., An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors. Chemical Engineering Journal, 2012, 198: 512–528.

    Article  Google Scholar 

  73. Diao K.K., Xiao Z., Zhao Y.Y., Specific surface areas of porous Cu manufactured by lost carbonate sintering: Measurements by quantitative stereology and cyclic voltammetry. Materials Chemistry and Physics, 2015, 162: 571–579.

    Article  Google Scholar 

  74. Liu J.F., Wu W.T., Chiu W.C., Hsieh W.H., Measurement and correlation of friction characteristic of flow through foam matrixes. Experimental Thermal and Fluid Science, 2006, 30(4): 329–336.

    Article  Google Scholar 

  75. Gibson L.J., Ashby M.F., Cellular solids, structures and properties. Pergamon press Oxford, 1988.

    MATH  Google Scholar 

  76. Buciuman F.C., Kraushaar-Czarnetzki B., Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. Industrial & Engineering Chemical Research, 2003, 42(9): 1863–1869.

    Article  Google Scholar 

  77. Kumar P., Topin F., The geometric and thermohydraulic characterization of ceramic foams: An analytical approach. Acta Materialia, 2014, 75: 273–286.

    Article  ADS  Google Scholar 

  78. Grosse J., Dietrich B., Garrido G.I., Habisreuther, P., et al., Morphological characterization of ceramic sponges for applications in chemical engineering. Industrial & Engineering Chemistry Research, 2009, 48(23): 10395–10401.

    Article  Google Scholar 

  79. Queheillalt D.T., Wadley H.N.G., Cellular metal lattices with hollow trusses. Acta Materialia, 2005, 53(2): 303–313.

    Article  ADS  Google Scholar 

  80. Kang K.J., Wire-woven cellular metals: The present and future. Progress in Materials Science, 2015, 69: 213–307.

    Article  Google Scholar 

  81. Deshpande V.S., Fleck N.A., Ashby M.F., Effective properties of the octet-truss lattice material. Journal of the Mechanics Physics of Solids, 2001, 49(8): 1747–1769.

    Article  MATH  ADS  Google Scholar 

  82. Wadley H.N.G., Fleck N.A., Evans A.G., Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 2003, 63(16): 2331–2343.

    Article  Google Scholar 

  83. Yan H.B., Zhang Q.C., Lu T.J., Kim T., A lightweight X-type metallic lattice in single-phase forced convection. International Journal of Heat and Mass Transfer, 2015, 83: 273–283.

    Article  Google Scholar 

  84. St-Pierre L., Fleck N.A., Deshpande V.S., The predicted compressive strength of a pyramidal lattice made from case hardened steel tubes. International Journal of Solids and Structure, 2014, 51(1): 41–52.

    Article  Google Scholar 

  85. Wei K., He R.J., Cheng X.M., Pei Y.M., et al., Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel. Applied Thermal Engineering, 2015, 81: 10–17.

    Article  Google Scholar 

  86. Xiong J., Ma L., Pan S., Wu L., et al., Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores. Acta Materialia, 2012, 60(4): 1455–1466.

    Article  ADS  Google Scholar 

  87. Liu J.Y., Zhu X., Zhou Z.G., Wu L.Z., Ma L., Effects of thermal exposure on mechanical behavior of carbon fiber composite pyramidal truss core sandwich panel. Composites Part B-Engineering, 2014, 60: 82–90.

    Article  Google Scholar 

  88. Wu Q.Q., Ma L., Wu L.Z., Xiong J., A novel strengthening method for carbon fiber composite lattice truss structures. Compos Structure, 2016, 153: 585–592.

    Article  Google Scholar 

  89. Antwerpen W., Toit C.G., Rousseau P.G., A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 2010, 240(7): 1803–1818.

    Article  Google Scholar 

  90. Haughey D.P., Beveridge G.S., Structural Properties of Packed Beds — a Review. Canadian Journal of Chemical Engineering, 1969, 47(2): 130.

    Article  Google Scholar 

  91. Roblee L.H.S., Baird R.M., Tierney J.W., Radial Porosity Variations in Packed Beds. Aiche Journal, 1958, 4(4): 460–464.

    Article  Google Scholar 

  92. Carman C.P., Fluid flow through Granular beds. Transactions of the Institution of Chemical Engineers, 1937, 15: 150.

    Google Scholar 

  93. Leva M., Grummer M., Pressure drop through packed tubes 3. prediction of voids in packed tubes. Chemical Engineering Progress, 1947, 43(12): 713–718.

    Google Scholar 

  94. Rutgers R., Packing of spheres. Nature, 1962, 193(4814): 465–466.

    Article  ADS  Google Scholar 

  95. Scott G.D., Packing of equal spheres. Nature, 1960, 188(4754): 908–909.

    Article  MATH  ADS  Google Scholar 

  96. Foumeny E.A., Moallemi H.A., Mcgreavy C., Castro J.A.A., Elucidation of mean voidage in packed-beds. Canadian Journal of Chemical Engineering, 1991, 69(4): 1010–1015.

    Article  Google Scholar 

  97. Romkes S.J.P., Dautzenberg E., van den Bleek C.M., Calis H.P.A., CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. Chemical Engineering Journal, 2003, 96(1–3): 3–13.

    Article  Google Scholar 

  98. Wang J.Y., Yang J., Cheng Z.L., Liu Y., et al., Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed. Applied Energy, 2018, 227: 719–730.

    Article  Google Scholar 

  99. Wallach J.C, Gibson L.J., Truss core sandwich panels and methods for making same. US Patent, November 21, 2002, no. US6644535B2.

  100. Choi KS K.K., Assembly of coil springs and sandwich panel using the same. Korea patent, March 20, 2007, no. 10-0700212.

  101. Lim J.H., Kang K.J., Wire formed cellular metals. Materials Transactions, 2006, 47(9): 2154–2160.

    Article  Google Scholar 

  102. Lim J.H., Kang K.J., Mechanical behavior of sandwich panels with tetrahedral and Kagome truss cores fabricated from wires. International Journal of Solids Structures, 2006, 43(17): 5228–5246.

    Article  MATH  Google Scholar 

  103. Kim H., Kang K.J., Joo J.H., A Zigzag-formed Truss Core and its Mechanical Performances. Journal of Sandwich Structure & Materials, 2010, 12(3): 351–368.

    Article  Google Scholar 

  104. Kang K.J., Lee C.J., Lee D.S., Lee B.C., A light weight sandwich panel with a core constructed of wires and the manufacturing method of the same. Korea patent, October 8, 2007, no. 10-0767186.

  105. Sennewald C.A.O., Böhm R., Cherif C.H., Hoffmann G., Gruhl A., Textile based metal sandwiches and metal-matrix-composites reinforced with 3D wire structures. Part I: development and realisation of cellular 3D wire structures. Proceedings of 15th European conference on composite materials, Venice, Italia, 2012.

  106. Kaina S., Kieback B., Hufenbach W., Weck D., Gruhl A., Thieme M., Böhm R., Cherif C., Sennewald C., Cellular metal for lightweight design based on textile wire structures. Proceedings of CELLMAT2012, Dresden, Germany, 2012.

  107. Sypeck D.J., Wadley H.N.G., Multifunctional microtruss laminates: Textile synthesis and properties. Journal of Materials Research, 2001, 16(3): 890–897.

    Article  ADS  Google Scholar 

  108. Lee Y.H., Lee B., Jeon I., Kang K.J., Wire-woven bulk Kagome (WBK) truss cores. Acta Materials, 2007, 55: 6084–6094.

    Article  ADS  Google Scholar 

  109. Kieselstein E., Weinrich T., Adam F., Weck D., Gottwald R., Studnitzky T., Cellular metals based on 3D-wire structures. 6th International conference on porous metals and metallic foams, September 1–4, 2009.

  110. Lee M.G., Ko G.D., Song J., Kang K.J., Compressive characteristics of a wire-woven cellular metal. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012, 539: 185–193.

    Article  Google Scholar 

  111. Lee M.G., Kang K.J., Feasibility of a wire-woven metal for application as a sandwich core. International Journal of Mechanical Sciences, 2014, 80: 81–92.

    Article  Google Scholar 

  112. Lee M.G., Lee K.W., Hur H.K., Kang K.J., Mechanical behavior of a wire-woven metal under compression. Composite Structures, 2013, 95: 264–277.

    Article  Google Scholar 

  113. Sharp K.M.D., Brown J., Metallic cellular materials produced by 3D weaving. 8th International conference on porous metals and metallic foams, 2014.

  114. Guo Z.Y., Xiong D.X., Yang C., Chen M., Li Z.X., Continuous liquid-vapor phase transition in microspace. International Journal of Thermal Sciences, 2000, 39(4): 481–489.

    Article  Google Scholar 

  115. Chen G.M., Tso C.P., Hung Y.M., Field synergy principle analysis on fully developed forced convection in porous medium with uniform heat generation. International Communications in Heat and Mass Transfer, 2011, 38(9): 1247–1252.

    Article  Google Scholar 

  116. Peng Q.G., E, J.Q., Chen J.W., Zuo W., et al., Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Conversion and Management, 2018, 155: 276–286.

    Article  Google Scholar 

  117. Wang G.H., Wang D.B., Deng J., Lyu Y.M., et al., Experimental and numerical study on the heat transfer and flow characteristics in shell side of helically coiled tube heat exchanger based on multi-objective optimization. International Journal of Heat and Mass Transfer, 2019, 137: 349–364.

    Article  Google Scholar 

  118. Bagci O., Dukhan N., Experimental hydrodynamics of high-porosity metal foam: Effect of pore density. International Journal of Heat and Mass Transfer, 2016, 103: 879–885.

    Article  Google Scholar 

  119. Dukhan N., Bagci O., Ozdemir M., Metal foam hydrodynamics: Flow regimes from pre-Darcy to turbulent. International Journal of Heat and Mass Transfer, 2014, 77: 114–123.

    Article  Google Scholar 

  120. Hwang J.J., Hwang G.J., Yeh R.H., Chao C.H., Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. Journal of Fluids Engineering-Transactions of the Asme, 2002, 124(1): 120–129.

    Article  Google Scholar 

  121. Dukhan N., Patel K., Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlations. Journal of Porous Materials, 2011, 18(6): 655–665.

    Article  Google Scholar 

  122. Vafai K., Tien C.L., Boundary and inertia effects on convective mass-transfer in porous-media. International Journal of Heat and Mass Transfer, 1982, 25(8): 1183–1190.

    Article  Google Scholar 

  123. Kumar P., Topin E., State-of-the-art of pressure drop in open-Cell porous foams: Review of experiments and correlations. Journal of Fluids Engineering-Transactions of the Asme, 2017, 139(11): 111401–1-13.

    Article  Google Scholar 

  124. Ergun S., Orning A.A., Fluid flow through randomly packed columns and fluidized beds. Industrial & Engineering Chemistry, 1949, 41(6): 1179–1184.

    Article  Google Scholar 

  125. Twigg M.V., Richardson J.T., Fundamentals and applications of structured ceramic foam catalysts. Industrial & Engineering Chemistry Research, 2007, 46(12): 4166–4177.

    Article  Google Scholar 

  126. Dietrich B., Pressure drop correlation for ceramic and metal sponges. Chemical Engineering Science, 2012, 74: 192–199.

    Article  Google Scholar 

  127. Edouard D., Lacroix M., Huu C.P., Luck F., Pressure drop modeling on SOLID foam: State-of-the art correlation. Chemical Engineering Journal, 2008, 144(2): 299–311.

    Article  Google Scholar 

  128. Kumar P., Topin F., Influence of morphology on flow law characteristics in open-cell foams: an overview of usual approaches and correlations. Journal of Fluids Engineering-Transactions of the Asme, 2017, 139(7): 071301–1–12.

    Article  Google Scholar 

  129. Topin F., Bonnet J.P., Madani B., Tadrist L., Experimental analysis of multiphase flow in metallic foam: Flow laws, heat transfer and convective boiling. Advanced Engineering Materials, 2006, 8(9): 890–899.

    Article  Google Scholar 

  130. Dukhan N., Correlations for the pressure drop for flow through metal foam. Experiments in Fluids, 2006, 41(4): 665–672.

    Article  ADS  Google Scholar 

  131. Dukhan N., Picon-Feliciano R., Alvarez-Hernandez A.R., Air flow through compressed and uncompressed aluminum foam: Measurements and correlations. Journal of Fluids Engineering-Transactions of the Asme, 2006, 128(5): 1004–1012.

    Article  Google Scholar 

  132. Tadrist, L., Miscevic, M., Rahli, O., Topin, F., About the use of fibrous materials in compact heat exchangers. Experimental Thermal and Fluid Science, 2004, 28(2–3): 193–199.

    Article  Google Scholar 

  133. Khayargoli P., Loya V., Lefebvre P.L., Medraj M., The impact of microstructure on the permeability of metal foams. CSME 2004, Forum, 2004, pp. 220–228.

  134. Wu Z.Y., Caliot C., Bai F.W., Flamant G., et al., Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Applied Energy, 2010, 87(2): 504–513.

    Article  Google Scholar 

  135. Inayat A., Schwerdtfeger J., Freund H., Korner C., et al., Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing. Chemical Engineering Science, 2011, 66(12): 2758–2763.

    Article  Google Scholar 

  136. Leong K.C., Jin L.W., Characteristics of oscillating flow through a channel filled with open-cell metal foam. International Journal of Heat and Fluid Flow, 2006, 27(1): 144–153.

    Article  Google Scholar 

  137. Kim T., Hodson H.P., Lu T.J., Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material. International Journal of Heat and Mass Transfer, 2005, 48(19–20): 4243–4264.

    Article  Google Scholar 

  138. Kim T., Hodson H.P., Lu T.J., Pressure loss and heat transfer mechanisms in a lattice-frame structured heat exchanger. Proceedings of the Institution of Mechanical Engineers Part C-journal of Mechanical engineering science, 2004, 218(11): 1321–1336.

    Article  Google Scholar 

  139. Swaminathan G.K., Karthik K.B., Justin A.W., Suresh V.G., Numerical investigation of fluid flow and heat transfer in periodic porous lattice-frame materials. IHTC16, 2014, pp. 6651–6665. DOI: https://doi.org/10.1615/IHTC15.pmd.008706.

  140. Hoffmann F., Heat transfer performance and pressure drop of Kagome core metal truss panels. Master thesis, University of Cambridge, Cambridge, UK, 2002.

    Google Scholar 

  141. Erdim E., Akgiray O., Demir I., A revisit of pressure drop-flow rate correlations for packed beds of spheres. Powder Technology, 2015, 283: 488–504.

    Article  Google Scholar 

  142. Yang J., Wang J., Bu S.S., Zeng M., et al., Experimental analysis of forced convective heat transfer in novel structured packed beds of particles. Chemical Engineering Sciences, 2012, 71: 126–137.

    Article  Google Scholar 

  143. Calis H.P.A., Nijenhuis J., Paikert B.C., Dautzenberg F.M., van den Bleek C.M., CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Sciences, 2001, 56(4): 1713–1720.

    Article  Google Scholar 

  144. Susskind H., Becker W., Pressure drop in geometrically ordered packed beds of spheres. AIChE Journal, 1967, 13(6): 1155–1159.

    Article  Google Scholar 

  145. Yang J., Wang Q.W., Zeng M., Nakayama A., Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles. Chemical Engineering Sciences, 2010, 65(2): 726–738.

    Article  Google Scholar 

  146. Tian J., Kim, T., Lu T.J., Hodson H.P., et al., The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. International Journal of Heat and Mass Transfer, 2004, 47(14–16): 3171–3186.

    Article  MATH  Google Scholar 

  147. Shen B.B., Yan H.B., Xue H.Q., Xie G.N., The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels. Applied Thermal Engineering, 2018, 142: 79–88.

    Article  Google Scholar 

  148. Joo J.H., Kang B.S., Kang K.J., Experimental studies on friction factor and heat transfer characteristics through wire-woven bulk Kagome structure. Experimental Heat Transfer, 2009, 22(2): 99–116.

    Article  MathSciNet  ADS  Google Scholar 

  149. Vafai K., Handbook of porous media. Third Edition, CRC Press, 2015.

  150. Zhao C.Y., Review on thermal transport in high porosity cellular metal foams with open cells. International Journal of Heat and Mass Transfer, 2012, 55(13–14): 3618–3632.

    Article  Google Scholar 

  151. Nakayama A., Ando K., Yang C., Sano Y., et al., A study on interstitial heat transfer in consolidated and unconsolidated porous media. Heat Mass Transfer, 2009, 45(11): 1365–1372.

    Article  ADS  Google Scholar 

  152. Wu Z.Y., Caliot C., Flamant G., Wang Z.F., Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. International Journal of Heat and Mass Transfer, 2011, 54(7–8): 1527–1537.

    Article  MATH  Google Scholar 

  153. Younis L.B., Viskanta R., Experimental-determination of the volumetric heat-transfer coefficient between stream of air and ceramic foam. International Journal of Heat and Mass Transfer, 1993, 36(6): 1425–1434.

    Article  Google Scholar 

  154. Lu T.J., Stone H.A., Ashby M.F., Heat transfer in open-cell metal foams. Acta Material, 1998, 46(10): 3619–3635.

    Article  ADS  Google Scholar 

  155. Wu D.X., Huang C.L., Thermal conductivity model of open-cell foam suitable for wide span of porosities. International Journal of Heat and Mass Transfer, 2019, 130: 1075–1086.

    Article  Google Scholar 

  156. Bai M., Chung J.N., Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams. International Journal Thermal Science, 2011, 50(6): 869–880.

    Article  Google Scholar 

  157. Fu X., Viskanta R., Gore J.P., Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics. Experimental Thermal Fluid Science, 1998, 17(4): 285–293.

    Article  Google Scholar 

  158. Peng Y., Richardson J.T., Properties of ceramic foam catalyst supports: one-dimensional and two-dimensional heat transfer correlations. Applied Catalysis a-General, 2004, 266(2): 235–244.

    Article  Google Scholar 

  159. Giani L., Groppi G., Tronconi E., Heat transfer characterization of metallic foams. Industrial & Engineering Chemistry Research, 2005, 44(24): 9078–9085.

    Article  Google Scholar 

  160. Calmidi V.V., Mahajan R.L., Forced convection in high porosity metal foams. Journal of Heat Transfer-Transactions of the Asme, 2000, 122(3): 557–565.

    Article  Google Scholar 

  161. Ando K., Hirai H., Sano Y., An accurate experimental determination of interstitial heat transfer coefficients of ceramic foams using the single blow method. The Open Transport Phenomena Journal, 2013, 5(1): 7–12.

    Article  Google Scholar 

  162. Dukhan N., Bagci O., Ozdemir M., Thermal development in open-cell metal foam: An experiment with constant wall heat flux. International Journal of Heat and Mass Transfer, 2015, 85: 852–859.

    Article  Google Scholar 

  163. Kamiuto K., Yee S.S., Heat transfer correlations for open-cellular porous materials. International Communication in Heat and Mass Transfer, 2005, 32(7): 947–953.

    Article  Google Scholar 

  164. Ichimiya K., A new method for evaluation of heat transfer between solid material and fluid in a porous medium. Journal of Heat Transfer-Transactions of the Asme, 1999, 121(4): 978–983.

    Article  Google Scholar 

  165. Zhang X.Q., Jin X., Xie G.N., Yan H.B., Thermo-fluidic comparison between sandwich panels with tetrahedral lattice cores fabricated by casting and metal sheet folding. Energies, 2017, 10(7): 1–17.

    Article  Google Scholar 

  166. Jin X., Shen B.B., Yan H.B., Sunden B., Xie G.N., Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores. International Journal of Heat and Mass Transfer, 2018, 127: 268–282.

    Article  Google Scholar 

  167. Yan H.B., Mew T., Lee M.G., Kang K.J., et al., Thermofluidic Characteristics of a Porous Ventilated Brake Disk. Journal of Heat Transfer-Transactions of the Asme, 2015, 137(2): 022601–1-11.

    Article  Google Scholar 

  168. Noriaki W., Seiichir D.K., Heat and mass transfer in packed beds. Gordon and Breach, New York, 1982.

    Google Scholar 

  169. Gong L., Li Y.T., Bai Z., Xu M.H., Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Applied Thermal Engineering, 2018, 137: 288–295.

    Article  Google Scholar 

  170. Leong K.C., Li H.Y., Jin L. W., Chai J.C., Numerical and experimental study of forced convection in graphite foams of different configurations. Applied Thermal Engineering, 2010, 30(5): 520–532.

    Article  Google Scholar 

  171. Alvandifar N., Saffar-Avval M., Amani E., Partially metal foam wrapped tube bundle as a novel generation of air cooled heat exchangers. International Journal of Heat and Mass Transfer, 2018, 118: 171–181.

    Article  Google Scholar 

  172. Odabaee M., Hooman K., Application of metal foams in air-cooled condensers for geothermal power plants: An optimization study. International Communication in Heat and Mass Transfer, 2011, 38(7): 838–843.

    Article  Google Scholar 

  173. Xu Z.G., Qin J., Zhou X., Xu H.J., Forced convective heat transfer of tubes sintered with partially-filled gradient metal foams (GMFs) considering local thermal non-equilibrium effect. Applied Thermal Engineering, 2018, 137: 101–111.

    Article  Google Scholar 

  174. Kurtbas I., Celik N., Dincer I., Exergy transfer in a porous rectangular channel. Energy, 2010, 35(1): 451–460.

    Article  Google Scholar 

  175. Lu W., Zhao C.Y., Tassou S.A., Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. International Journal of Heat and Mass Transfer, 2006, 49(15–16): 2751–2761.

    Article  MATH  Google Scholar 

  176. Li Y.Z., Wang S.X., Zhao Y.L., Experimental study on heat transfer enhancement of gas tube partially filled with metal foam. Experimental Thermal Fluid Science, 2018, 97: 408–416.

    Article  Google Scholar 

  177. Nimvari M.E., Jouybari N.F., Investigation of turbulence effects within porous layer on the thermal performance of a partially filled pipe. International Journal Thermal Science, 2017, 118: 374–385.

    Article  Google Scholar 

  178. Yang C., Nakayama A., Liu W., Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. International Journal Thermal Science, 2012, 54: 98–108.

    Article  Google Scholar 

  179. Lai Z.C., Hu H.T., Ding G.L., Effect of porosity on heat transfer and pressure drop characteristics of wet air in hydrophobic metal foam under dehumidifying conditions. Experimental Thermal Fluid Science, 2018, 96: 90–100.

    Article  Google Scholar 

  180. Hafeez P., Chandra S., Mostaghimi J., Heat transfer during high temperature gas flow through metal foam heat exchangers. Journal of Heat Transfer-Transactions of the Asme, 2017, 139(12): 121801–1-11.

    Article  Google Scholar 

  181. Jamarani A., Maerefat M., Jouybari N.F., Nimvari M.E., Thermal performance evaluation of a double-tube heat exchanger partially filled with porous media under turbulent flow regime. Transport in Porous Media, 2017, 120(3): 449–471.

    Article  MathSciNet  Google Scholar 

  182. Yan H.B., Zhang Q.C., Lu T.J., An X-type lattice cored ventilated brake disc with enhanced cooling performance. International Journal of Heat and Mass Transfer, 2015, 80: 458–468.

    Article  Google Scholar 

  183. Abdulmohsin R.S., Al-Dahhan M.H., Characteristics of convective heat transport in a packed pebble-bed reactor. Nuclear Engineering and Design, 2015, 284: 143–152.

    Article  Google Scholar 

  184. Nuntaphan A., Vithayasai S., Vorayos N., Vorayos N., Kiatsiriroat T., Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement. International Communication in Heat and Mass Transfer, 2010, 37(3): 287–292.

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Science and Technology Major Project (2017-III-0005-0029), the National Natural Science Foundation of China (Grant Nos. 51806027, U19B2005) and the National Key R&D Program of China (Grant No. 2018YFC0310006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Sun, M., Zhang, L. et al. Forced Convection Heat Transfer in Porous Structure: Effect of Morphology on Pressure Drop and Heat Transfer Coefficient. J. Therm. Sci. 30, 363–393 (2021). https://doi.org/10.1007/s11630-021-1403-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1403-x

Keywords

Navigation