Skip to main content
Log in

Numerical investigation of high pressure and high Reynolds diffusion flame using Large Eddy Simulation

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Today, with nonstop improvement in computational power, Large-Eddy Simulation (LES) is a high demanding research tool for predicting engineering flows. Such flows on high pressure condition like diesel engines is extensively employed in ground and marine transportation, oblige the designer to control and predict toxic pollutants, while maintaining or improving their high thermal efficiency. This becomes one of the main challenging issues in decades. In the present work, numerical investigation of diffusion flame dynamics is performed in the near-field of high-Reynolds jet flow on high pressure condition encountered in diesel engine applications. This work discusses the implementation of Partially Stirred Reactor (PaSR) combustion model by the approaches of large eddy simulation (LES).

The simulation results show that LES, in comparison with Reynolds-Averaged Navier-Stokes (RANS) simulation predicts and captures transient phenomena very well. These phenomena such as unsteadiness and curvature are inherent in the near-field of high Reynolds diffusion flame. The outcomes of this research are compared and validated by other researchers’ results. Detailed comparisons of the statistics show good agreement with the corresponding experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholas Apergis, James E. Payne “Energy consumption and economic growth: Evidence from the Commonwealth of Independent States” Energy Economics, vol. 31, 2009, pp.641–647

    Article  Google Scholar 

  2. Ayhan Demirbas, ”Progress and recent trends in biofuels” Progress in Energy and Combustion Science, vol. 33, 2007, pp.1–18

    Article  Google Scholar 

  3. Jing Luo, Mingfa Yao, Haifeng Liu, Binbin Yang “Experimental and numerical study on suitable diesel fuel surrogates in low temperature combustion conditions” Fuel, vol. 97, 2012, pp.621–629

    Article  Google Scholar 

  4. Heinz Pitsch, Olivier Desjardins, Guillaume Balarac, Matthias Ihme, “Large-eddy simulation of turbulent reacting flows”, Progress in Aerospace Sciences, vol.44, 2008, pp.466–478

    Article  ADS  Google Scholar 

  5. Tae Seon Park “LES and RANS simulations of cryogenic liquid nitrogen jets” Journal of supercritical Fluids, vol.72, 2012, pp.232–247

    Article  Google Scholar 

  6. L.Y.M. Gicquel, G. Staffelbach, T. Poinsot, ”Large Eddy Simulations of gaseous flames in gas turbine combustion chambers” Progress in Energy and Combustion Science, vol.38, 2012, pp.782–817

    Article  Google Scholar 

  7. Liang Wang, Song Fu, Angelo Carnarius, Charles Mockett, Frank Thiele, “A modular RANS approach for modeling laminar-turbulent transition in turbomachinery flows” International journal of heat and fluid flow, vol.34, 2012, pp.62–69

    Article  Google Scholar 

  8. Anders, J.W., Magi, V., and Abraham, J. “Large-eddy Simulation in the Near-field of a Transient Multicomponent Gas Jet with Density Gradients.” Computers and Fluids, vol.36, 2007, pp.1609–620

    Article  MATH  Google Scholar 

  9. A. Yu. Snegirev and A. S. Frolov ”The Large Eddy Simulation of a Turbulent Diffusion Flame” High Temperature, Vol. 49, 2011, pp. 690–703.

    Article  Google Scholar 

  10. Jack R. Edwards, John A. Boles, Robert A. Baurle, “Large-eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet” Combustion and Flame, vol.159, 2012, pp.1127–1138

    Article  Google Scholar 

  11. W.W. Kim, S. Menon, and H.C. Mongia, “Large-Eddy Simulation of a Gas Turbine Combustor Flow” Combustion Science and Technology, vol.143, 1999, pp. 25–62

    Article  Google Scholar 

  12. F. Maredi, W.P. Jones, and K.R. Menzies, “Large Eddy simulation of a model gas turbine combustor”, Combustion and Flame, vol.137, 2004, pp. 278–294

    Article  Google Scholar 

  13. K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarion, F. Ham, and P. Moin, “Large-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries”, Journal of Applied Mechanics, vol.73, 2006, pp.374–381

    Article  ADS  MATH  Google Scholar 

  14. G. Boudier, L.Y.M. Gicquel, and T.J. Poinsot, “Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors”, Combustion and Flame, vol.155, 2008, pp.196–214

    Article  Google Scholar 

  15. P.K. Senecal, E. P., and Richards, K., Multidimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry”, SAE, 2003-01-1043

    Google Scholar 

  16. Rishikesh Venugopal and John Abraham, “A Numerical Investigation of Flame Lift-Off in Diesel Jets.” Combustion Science and Technology, vol. 179, 2007, pp.2599–2618

    Article  Google Scholar 

  17. Venugopal, R. and Abraham, J. “Numerical Studies of the Response of Flamelets to Unsteadiness in the Near-Field of Jets under Diesel Conditions”. Combustion Science and Technology, vol.182, 2010, pp.717–738

    Article  Google Scholar 

  18. Paiboon Sripakagorn, George Kosály, and James J. Riley, “Investigation of the influence of the Reynolds number on extinction and reignition”, Combustion and Flame, vol.136, 2004, pp.351–363

    Article  Google Scholar 

  19. V.I. Golovitchev, Development of Universal Model of Turbulent Spray Combustion, Chalmers University of Technology, Department of Thermo and Fluids, Goteborg, Sweden, (2001)

    Google Scholar 

  20. Poinsot, T., Veynante, D., “Theoretical and Numerical Combustion.” RT Edwards, Inc. (2005)

    Google Scholar 

  21. Germano, M., Piomelli, U., Moin, P. and Cabot, W.. A Dynamic Sub grid scale Eddy Viscosity Model. Physics of Fluids, vol.3, 1991, pp.1760–1765

    Article  ADS  MATH  Google Scholar 

  22. Tap, F., and Veynante, D., Simulation of Flame Lift-o_ on a Diesel Jet Using a Generalized Flame Surface Density Approach”. Proceedings of Combustion Institute vol. 30, 2005, pp.919–926

    Article  Google Scholar 

  23. Speziale, C. G., Erlebacher, G., Zang, T. A., and Hussaini, M. Y. “The Subgrid-Scale Modeling of Compressible Turbulence” Physics of Fluids, vol.31, 1998, pp.940–942

    Article  ADS  Google Scholar 

  24. Andersson, N., Eriksson, L-E., and Davidson, L “Effects of Inflow Conditions and Subgrid Model on LES for Turbulent Jets” AIAA Paper, 2005, pp.2005–2925

    Google Scholar 

  25. Siebers, D.L., Higgins, B.S., and Pickett, L.M. “Flame Lift-off on Direct Injection Diesel Fuel Jets: Oxygen Concentration Effects.” SAE Paper 2002-01-0890, Detroit, MI, USA

    Google Scholar 

  26. Karlsson, J. A. J., Modeling Auto-Ignition, Flame Propagation and Combustion in Non-stationary Turbulent Sprays”. PhD thesis, Chalmers University of Technology, Goteborg. 1995

    Google Scholar 

  27. Saumyadip Mukhopadhyay, John Abraham Influence of heat release and turbulence on scalar dissipation rate in autoigniting n-heptane e/air mixtures Combustion and Flame, vol.159, 2012, pp.2883–2895

    Article  Google Scholar 

  28. Fabian Peng Karrholm, “Numerical Modeling of Diesel Spray Injection, Turbulence Interaction and Combustion, Chalmers University of Technology Department of Applied Mechanics Goteborg, Sweden, 2008

    Google Scholar 

  29. M. Chapuis, C. Fureby, E. Fedina, N. Alin & J. Tegnér, “LES Modeling of Combustion Applications Using OpenFOAM”, V European Conference on Computational Fluid Dynamics ECCOMAS CFD Lisbon, Portugal, 14–17 June (2010).

    Google Scholar 

  30. Hassan I. Kassem, Khalid M. Saqr, Hossam. S. Aly, Mohsin M. Sies, Mazlan Abdul Wahid, “Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM”, International Communications in Heat and Mass Transfer Vol. 38, 2011, pp.363–367

    Article  Google Scholar 

  31. Fureby C., “Towards Large Eddy Simulation in Engineering”, Progress in Aerospace Science, vol.44, 2008, pp p 381

    Article  ADS  Google Scholar 

  32. Fureby C. & Bensow R., “LES at Work: Quality Management in Practical LES”, In Quality and Re-liability of Large Eddy Simulations, Eds. Meyers J., Geurts B & Sagaut P., p 239, Springer Verlag, Berlin, Germany, 2008

    Chapter  Google Scholar 

  33. Saumyadip Mukhopadhyay, John Abraham Influence of heat release and turbulence on scalar dissipation rate in autoigniting n-heptane e/air mixtures Combustion and Flame, vol.159, 2012, pp.2883–2895

    Article  Google Scholar 

  34. Meredith K.V. & Black D.L., “Automated Global Mechanism Generation for use in CFD Simulations”, AIAA 2006-1168, Reno, Nevada, USA.

  35. Gottlieb S. & Shu C.-W. “Total Variational Diminishing Runge-Kutta Schemes”, Mathematics of Computation, vol.67, 1998, p 73

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Uzun, A. et al. 3-D Large-eddy Simulation for Jet Aeroacoustics. 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, Hilton Head, South Carolina, 2003

    Google Scholar 

  37. Venugopal, R. and Abraham, J. “Numerical Studies of the Response of Flamelets to Unsteadiness in the Near-Field of Jets under Diesel Conditions”. Combustion. Science and Technology, vol.182, 2010, pp.717–738

    Article  Google Scholar 

  38. Egolfopoulos, F.N. and Campbell, C.S. “Unsteady Counterflowing Strained Diffusion Flames: Diffusion-limited Frequency Response.” Journal of Fluid Mechanics, vol.318, 1996, pp.1–29

    Article  ADS  MATH  Google Scholar 

  39. Im, H.G., Chen, J.H., and Chen, J-Y. “Chemical Response of Methane/Air Diffusion Flames to Unsteady Strain Rate” Combustion and Flame, vol.118, 1999, pp 204–212

    Article  Google Scholar 

  40. Konstantin A. Kemenov, Haifeng Wang and Stephen B. Pope, “Modeling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame”, Combustion Theory and Modeling, vol.16, pp. 611–638, 2012

    Article  ADS  Google Scholar 

  41. Panchapakesan, N.R. and Lumley, J.L. “Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part I. Air Jets. Journal of Fluid Mechanics, vol.246, 1993, pp.197–223

    Article  ADS  Google Scholar 

  42. Panchapakesan, N.R. and Lumley, J.L. “Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part 2. Helium Jets. Journal of Fluid Mechanics, vol.246, 1993, pp.225–247

    Article  ADS  Google Scholar 

  43. Zhihua Wang, Yu Lv, Pei He, Junhu Zhou, Kefa Cen “Fully explicit implementation of direct numerical simulation for a transient near-field methane/air diffusion jet flame” Computers & Fluids vol. 39, 2010, pp.1381–1389

    Article  MATH  Google Scholar 

  44. F. Wang, J. Mi, P. Li, C. Zheng, “Diffusion flame of a CH4/H2 jet in hot low-oxygen coflow” International-Journal of Hydrogen Energy, vol.36, 2011, pp.9267–9277

    Article  Google Scholar 

  45. Amir Mardani, Sadegh Tabejamaat and Mohsen Ghamari, “Numerical study of influence of molecular diffusion in the mild combustion regime” Combustion Theory and Modeling vol. 14, pp.747–774, 2010

    Article  ADS  MATH  Google Scholar 

  46. Boersma, B.J., Brethouwer, G. & Nieuwstadt, F.T.M. A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Physics of Fluids, vol.10, pp.899–909, 1998

    Article  ADS  Google Scholar 

  47. Wygnanski, I. and Fiedler, H. Some Measurements in the Self-preserving Jet. Journal of Fluid Mechanics, vol.38, 1969, pp.577–612

    Article  ADS  Google Scholar 

  48. Peters, N. (1984). Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion. Progress in Energy and Combustion Science, 10: 319–339.

    Article  Google Scholar 

  49. Hussein J. Hussein, Steven P. Capp, William K. George “Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet” Journal of Fluid Mechanics, vol.258, 1994, pp.31–75

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichkoohi, A.L., Tousi, A.M. Numerical investigation of high pressure and high Reynolds diffusion flame using Large Eddy Simulation. J. Therm. Sci. 23, 412–421 (2014). https://doi.org/10.1007/s11630-014-0724-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-014-0724-4

Keywords

Navigation