Skip to main content
Log in

Overexpression of MbERF12, an ERF gene from Malus baccata (L.) Borkh, increases cold and salt tolerance in Arabidopsis thaliana associated with ROS scavenging through ethylene signal transduction

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Abiotic stress, such as drought, salt, and cold, affects normal plant growth. Ethylene response factors (ERFs) play an important role in the responses of plants to different stresses. An ERF gene was cloned from Malus baccata (L.) Borkh and named as MbERF12. A subcellular localization study proved that MbERF12 was a nucleus-localized protein. The expression level of MbERF12 was higher in stems and roots, which was markedly affected by high salinity, low temperature, and ethephon treatments. When MbERF12 was transformed into Arabidopsis thaliana, it obviously improved salt and low-temperature tolerance in transformed plants. Overexpression of MbERF12 in transformed A. thaliana also led to higher levels of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) and higher contents of ethylene, chlorophyll, and proline, while the content of malondialdehyde (MDA) was lower, especially when being dealt with low-temperature and high-salinity stresses. MbERF12 plays a key role in the response to salt and cold stresses in Arabidopsis by improving the scavenging ability for reactive oxygen species (ROS) through ethylene signal transduction. We proposed that MbERF12 may function as a positive regulator for abiotic stress responses and can be considered as a potential gene for improvement of cold and high-salinity tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Abiri R, Shaharuddin NA, Maziah M, Yusof BZN, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi MM (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44

    Article  CAS  Google Scholar 

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. P Natl Acad Sci USA 104:6484–6489

    Article  CAS  Google Scholar 

  • An G, Watson BD, Chang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá R, Lópezcobollo R, Mar MC, Angosto T, Alonso JM, Ecker JR (2014) The Arabidopsis 14-3-3 protein rare cold inducible 1a links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Z, Zhuo S, Liu X, Che G, Wang Z, Gu R, Shen J, Song W, Zhou Z, Han D, Zhang X (2020) The MADS-Box gene CsSHP participates in fruit maturation and floral organ development in cucumber. Front Plant Sci 10:1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Je J, Song C, Hwang JE, Lim CO (2012) A proximal promoter region of Arabidopsis DREB2C confers tissue-specific expression under heat stress. J Integr Plant Biol 54:640–651

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Cui F, You L, Li XH, Xiong LZ (2014) A homolog of ethylene overproducer, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J 78:834–849

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, nze D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Sherif S, Mila I, Bouzayen M, Jayasankar S (2009) Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. J Exp Bot 60:907–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erpen L, Devi HS, Grosser JW, Dutt M (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132:1–25

    Article  CAS  Google Scholar 

  • Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS (2020) Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 40:750–776

    Article  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Zhu C, Wang C, Liu L, Shen Q, Xu D, Wang Q (2021) Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiol Bioch 159:257–267

    Article  CAS  Google Scholar 

  • Guan R, Su J, Meng X, Li S, Liu Y, Xu J, Zhang S (2015) Multilayered regulation of ethylene induction plays a positive role in Arabidopsis resistance against Pseudomonas syringae. Plant Physiol 169:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Ding H, Chai L, Liu W, Zhang Z, Hou Y, Yang G (2018a) Isolation and characterization of MbWRKY1, a WRKY transcription factor gene from Malus baccata (L.) Borkh involved in drought tolerance. Can J Plant Sci 98:1023–1034

    Article  CAS  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020a) Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. Int J Mol Sci 21:1198

    Article  CAS  PubMed Central  Google Scholar 

  • Han D, Du M, Zhou Z, Wang S, Li T, Han J, Xu T, Yang G (2020b) An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis. In Vitro Cell Dev-Pl 56:588–599

    Article  CAS  Google Scholar 

  • Han D, Han J, Xu T, Li T, Yao C, Wang Y, Luo D, Yang G (2021) Isolation and preliminary functional characterization of MxWRKY64, a new WRKY transcription factor gene from Malus xiaojinensis Cheng et Jiang. In Vitro Cell Dev-Pl 57:202–213

    Article  CAS  Google Scholar 

  • Han D, Han J, Yang G, Wang S, Xu T, Li W (2020c) An ERF transcription factor gene from Malus baccata (L.) Borkh, MbERF11, affects cold and salt stress tolerance in Arabidopsis. Forests 11:514

    Article  Google Scholar 

  • Han D, Wang Y, Zhang Z, Pu Q, Ding H, Han J, Fan T, Bai X, Yang Y (2017) Isolation and functional analysis of MxCS3: a gene encoding a citrate synthase in Malus xiaojinensis, with functions in tolerance to iron stress and abnormal flower in transgenic Arabidopsis thaliana. Plant Growth Regul 82:479–489

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Chai L, Liu W, Li H, Yang G (2018b) Isolation and characterization of MbWRKY2 gene involved in enhanced drought tolerance in transgenic tobacco. J Plant Interact 13:163–172

    Article  CAS  Google Scholar 

  • Han D, Zhang Z, Ding H, Wang Y, Liu W, Li H, Yang G (2018c) Molecular cloning and functional analysis of MbWRKY3 involved in improved drought tolerance in transformed tobacco. J Plant Interact 13:329–337

    Article  CAS  Google Scholar 

  • Huang Q, Qian X, Jiang T, Zheng X (2019) Effect of eugenol fumigation treatment on chilling injury and CBF gene expression in eggplant fruit during cold storage. Food Chem 292:143–150

    Article  CAS  PubMed  Google Scholar 

  • Jiang K, Zhou M (2016) Cloning and functional characterization of PjPORB, a member of the POR gene family in Pseudosasa japonica cv. Akebonosuji. Plant Growth Regul 79:95–106

    Article  CAS  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udaya-kumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhwani D, Pandey A, Dhar Y, Bag S, Trivedi P, Asif M (2016) Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalization during evolution. Sci Rep 6:18878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Hwang EY, Seok HY, Tarte VN, Jeong MS, Jang SB, Moon YH (2015) Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Rep 34:223–231

    Article  CAS  PubMed  Google Scholar 

  • Li W, Pang S, Lu Z, Jin B (2020) Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9:1515

    Article  CAS  PubMed Central  Google Scholar 

  • Li X, Tao S, Wei S, Ming M, Huang X, Zhang S, Wu J (2018) The mining and evolutionary investigation of AP2/ERF genes in pear (Pyrus). BMC Plant Biol 18:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1:42–57

    Article  CAS  PubMed  Google Scholar 

  • Liu MC, Pirrello J, Chervin C, Roustan JP, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169:2380–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mazarel M, Puthoff DP, Hart JK, Rodermel SR, Baum TJ (2002) Identification and characterization of a soybean ethylene responsive elementbinding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mol Plant Microbe Interact 15:577–586

    Article  Google Scholar 

  • Mickelbart M, Hasegawa P, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Fujisawa M, Shima Y, Ito Y (2014) The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. J Exp Bot 65:3111–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papdi C, Perez-Salamo I, Joseph MP, Giuntoli B, Bögre L, Koncz C, Szabados L (2015) The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor vii genes rap2.12, rap2.2 and rap2.3. Plant J 82:772–784

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Seok HY, Woo DH, Lee SY, Tarte VN, Lee EH (2011) AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochem Biophy Res Comm 414:135–141

    Article  CAS  Google Scholar 

  • Perata P (2020) Ethylene signaling controls fast oxygen sensing in plants. Trends Plant Sci 25:3–6

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigyo M, Hasebe M, Ito M (2012) Molecular evolution of the AP2 subfamily. Gene 366:256–265

    Article  CAS  Google Scholar 

  • Shin LJ, Lo JC, Yeh KC (2012) Copper chaperone antioxidant protein1 is essential for copper homeostasis. Plant Physiol 159:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu J (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui X, Zhang H, Song Z, Gao Y, Li W, Li M, Zhao L, Li Y, Wang B (2019) Ethylene response factor NtERF91 positively regulates alkaloid accumulations in tobacco (Nicotiana tabacum L.). Biochem Biophy Res Commun 517:164–171

    Article  CAS  Google Scholar 

  • Sun B, Zhan XD, Cao LY, Cheng SH (2017) Research progress of rice AP2/ERF transcription factors. J Agr Biotech 25:1860–1869

    Google Scholar 

  • Sun ZM, Zhou ML, Wang D, Tang YX, Lin M, Wu YM (2016) Overexpression of the lotus corniculatus soloist gene LcAP2/ERF107 enhances tolerance to salt stress. Protein Peptide Lett 23:442–449

    Article  CAS  Google Scholar 

  • Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1059

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, McFerson J, Zhong GY, Bretting P (2015) The vulnerability of US apple (Malus) genetic resources. Genet Resour Crop Evol 62:765–794

    Article  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. Plos One 6:e25216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Tan D, Takahashi A, Li TZ, Harada T (2007) MdERFs, two ethylene-response factors involved in apple fruit ripening. J Exp Bot 58:3743–3748

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Xin M, Zhou X, Liu C, Li S, Liu D, Xu Y, Qin ZW (2017) The novel ethylene-responsive factor CsERF025 affects the development of fruit bending in cucumber. Plant Mol Biol 95:1–13

    Article  CAS  Google Scholar 

  • Xie L, Ying Y, Ying T (2009) Rapid determination of ethylene content in tomatoes using visible and short-wave near-infrared spectroscopy and wavelength selection. Chemometr Intell Lab 97:141–145

    Article  CAS  Google Scholar 

  • Xu F, Liu S, Liu Y, Xu J, Liu T, Dong S (2019) Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit. Food Chem 288:201–217

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Hsu FC, Li JP, Wang NN, Shih MC (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 156:202–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Li J, Liu W, Yu Z, Shi Y, Lv B, Wang B, Han D (2015) Molecular cloning and characterization of MxNAS2, a gene encoding nicotianamine synthase in Malus xiaojinensis, with functions in tolerance to iron stress and misshapen flower in transgenic tobacco. Sci Horti 183:77–86

    Article  CAS  Google Scholar 

  • Yu Y, Yang D, Zhou S, Gu J, Wang F, Dong J, Huang R (2017) The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma 254:401–408

    Article  CAS  PubMed  Google Scholar 

  • Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J (2011) Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene- mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol 75:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Pan X, Liu S, Lin W, Li Y, Zhang X (2021) Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development. Genomics 113:474–489

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhu C, Lyu Y, Chen Y, Zhang Z, Lai Z, Lin Y (2020) Genome-wide identification, molecular evolution, and expression analysis provide new insights into the APETALA2/ethylene responsive factor (AP2/ERF) superfamily in Dimocarpus longan Lour. BMC Genom 21:62

    Article  CAS  Google Scholar 

  • Zhao Q, Hu RS, Liu D, Liu X, Wang J, Xiang XH, Li YY (2020) The AP2 transcription factor NtERF172 confers drought resistance by modifying NtCAT. Plant Biotechnol J 18:2444–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Wu Z, Cao G, Li J, Wei J, Tsuge T, Gu H, Aoyama T, Qu LJ (2014) Translucent green, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes. Mol Plant 7:601–615

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31301757), the Natural Science Fund Joint Guidance Project of Heilongjiang Province (LH2019C031; LH2020C009), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (LBH-Q16020), and the Young Talent Project of Northeast Agricultural University (19QC06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingguo Li or Guohui Yang.

Additional information

Editor: Yong Eui Choi

Supplementary Information

Figure S1.

Nucleotide and deduced amino acid sequences of MbERF12 gene. Underlines indicate conserved sequences. Black boxes indicate specific amino acids. Blue boxes indicate conserved elements. (PNG 592 kb)

High Resolution (TIF 2348 kb)

ESM 1

(DOC 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Han, J., Xu, T. et al. Overexpression of MbERF12, an ERF gene from Malus baccata (L.) Borkh, increases cold and salt tolerance in Arabidopsis thaliana associated with ROS scavenging through ethylene signal transduction. In Vitro Cell.Dev.Biol.-Plant 57, 760–770 (2021). https://doi.org/10.1007/s11627-021-10199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-021-10199-9

Keywords

Navigation