Skip to main content
Log in

Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate melatonin effects on the callus induction and phenolic compound production of Ocimum basilicum L. (sweet basil). Calluses, derived from leaf explants, were grown on Murashige and Skoog (MS) medium supplemented with 0, 100, or 200 μM melatonin, and subsequently extracted for determination of their phenolic contents. Melatonin decreased the callus induction in both concentrations. Based on the phytochemical analysis, the highest total phenolic acid contents (784.6 μg g−1 and 335.2 μg g−1, respectively) were recorded in calluses grown in 100 and 200 μM melatonin-supplemented medium, compared with the calluses induced with MS alone (192.0 μg g−1). Among the five phenolic acids confirmed in the callus samples, rosmarinic acid was the major constituent. The amount of rosmarinic acid increased significantly in callus grown on 100 μM melatonin medium by nearly 5-fold (754.2 μg g−1), compared with the control group callus. Major volatiles in basil calluses were represented by 3-methylbutanal, benzaldehyde, 1,8-cineole, 2-nonenal, eugenol, and methyl eugenol, and these were in the ranges of 4 to 14%, 24 to 50%, 2 to 3%, 0 to 0.55%, and 2 to 17% (in relative percentages), respectively. The qualitative and quantitative analyses of these substances found in calluses formed on melatonin-supplemented or melatonin-free medium were evaluated separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ahmed E, Arshad M, Khan MZ, Amjad MS, Sadaf HM, Riaz I, Sabir S, Ahmad N, Sabaoon (2017) Secondary metabolites and their multidimensional prospective in plant life. J Pharmacogn Phytochem 6:205–214

    CAS  Google Scholar 

  • Alemu A, Garedew W, Gebre A (2018) Essential oil yield components of basil (Ocimum basilicum L.) as affected by genotype and intrarow spacing at Jimma, SW Ethiopia. Acta Agrobot 71:1743

    Article  Google Scholar 

  • Ali NAA, Setzer WN (2013) Pharmacological activities of basil oil: a review. In: Govil JN, Bhattacharya S (eds) Recent progress in medicinal plants (RPMP). Essential oils–II. StudiumPress (India) PVT Ltd, New Delhi, pp 285–307

    Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797

    Article  CAS  PubMed  Google Scholar 

  • Bauer N, Leljak-Levanic D, Jelaska S (2004) Rosmarinic acid synthesis in transformed callus culture of Coleus blumei Benth. Z Naturforsch 59:554–560

    Article  CAS  Google Scholar 

  • Castro AHF, Braga GQ, Sousa FM, Coimbra MC, Chagas RCS (2016) Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). Rev Ciênc Agron 47:143–151

    Article  Google Scholar 

  • Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M (2018) Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant 164:349–363

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colomb 20:223–235

    CAS  Google Scholar 

  • El-Nabarawy MA, El-Kafafi SH, Hamza MA, Omar MA (2015) The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Ann Agric Sci 1:1–9

    Article  Google Scholar 

  • Erland LA, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10(11):e1096469. https://doi.org/10.1080/15592324.2015.1096469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnon H, Ibrahim RK (1997) Effects of various elicitors on the accumulation and secretion of isoflavonoids in white lupin. Phytochem 44:1463–1467

    Article  CAS  Google Scholar 

  • Gajula D, Verghese M, Boateng J, Walker LT, Shackelford L, Mentreddy SR, Cedric S (2009) Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of basil (Ocimum basilicum L. and Ocimum tenuiflorum L). Int J Cancer Res 5:130–143

    Article  CAS  Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

    Article  CAS  PubMed  Google Scholar 

  • Jayasinghe C, Gotoh N, Aoki T, Wada S (2003) Phenolic composition and antioxidant activity of sweet basil (Ocimum basilicum L.). J Agric Food Chem 51:4442–4449

    Article  CAS  PubMed  Google Scholar 

  • Kalidass C, Mohan VR, Arjunan Daniel A (2010) Effect of auxin and cytokinin on vincristine production by callus cultures of Catharanthus roseus L. (Apocynaceae). Trop Subtrop Agroecosyst 12:283–288

    Google Scholar 

  • Karam NS, Jawad FM, Arikat NS, Shibli RA (2003) Growth and rosmarinic acid accumulation in callus, cell suspension, and root cultures of wild Salvia fruticosa. Plant Cell Tissue Organ Cult 73:117–121

    Article  CAS  Google Scholar 

  • Kiferle C, Lucchesini M, Mensuali-Sodi A, Maggini R, Raffaelli A, Pardossi A (2011) Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent Eur J Biol 6:946–957

    CAS  Google Scholar 

  • Kintzios S, Kollias H, Straitouris E, Makri O (2004) Scale-up micropropagation of sweet basil (Ocimum basilicum L.) in an airlift bioreactor and accumulation of rosmarinic acid. Biotechnol Lett 26:521–523

    Article  CAS  PubMed  Google Scholar 

  • Kwon DY, Li X, Kim JK, Park SU (2017) Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Ocimum basilicum L. Saudi J Biol Sci 26:469–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Umano K, Shibamoto T, Lee KG (2005) Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 91:131–137

    Article  CAS  Google Scholar 

  • Liang D, Shen Y, Ni Z, Wang Q, Lei Z, Xu N, Deng Q, Lin L, Wang J, Lv X, Xia H (2018) Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front Plant Sci 9:426

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizukami H, Tabira Y, Ellis BE (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 12:706–709

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Onofrei V, Benchennouf A, Jancheva M, Loupassaki S, Ouaret W, Burducea M, Lobiuc A, Teliban GC, Robu T (2018) Ecological foliar fertilization effects on essential oil composition of sweet basil (Ocimum basilicum L.) cultivated in a field system. Sci Hortic 239:104–113

    Article  CAS  Google Scholar 

  • Orihara Y, Ebizuka Y (2010) Production of triterpene acids by cell-suspension cultures of Olea europaea. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic, NewYork, pp 341–347

    Chapter  Google Scholar 

  • Phippen WB, Simon JE (2000) Shoot regeneration of young leaf explants from basil (Ocimum basilicum L.). In Vitro Cell Dev Biol Plant 36:250–254

    Article  Google Scholar 

  • Potterat O (1997) Antioxidants and free radical scavengers of natural origin. Curr Org Chem 1:415–440

    CAS  Google Scholar 

  • Rafieian-Kopaei M, Hosseini-Asl K (2015) Effects of Ocimum basilicum on functional dyspepsia: a doubleblind placebo-controlled study. Iran J Med Sci 30:134–137

    Google Scholar 

  • Reiter R, Tang L, Garcia JJ, Muñoz-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60:2255–2271

    Article  CAS  PubMed  Google Scholar 

  • Saimaru H, Orihara Y, Tansakul P, Kang YH, Shibuya M, Ebizuka Y (2007) Production of triterpene acids by cell suspension cultures of Olea europaea. Chem Pharm Bull 55:784–788

    Article  CAS  Google Scholar 

  • Sgherri C, Cecconami S, Pinzino C, Navari-Izzo F, Izzo R (2010) Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem 123:416–422

    Article  CAS  Google Scholar 

  • Sumaira TK, Abbasi BH, Afridi MS, Tanveer F, Ullah I, Bashira S, Hano C (2017) Melatonin-enhanced biosynthesis of antimicrobial AgNPs by improving the phytochemical reducing potential of a callus culture of Ocimum basilicum L. var. Thyrsiflora. RSC Adv 7:38699–38713

    Article  CAS  Google Scholar 

  • Szafrańska K, Glińska S, Janas KM (2012) Changes in the nature of phenolic deposits after re-warming as a result of melatonin pre-sowing treatment of Vigna radiata seeds. J Plant Physiol 169:34–40

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Tarchoune I, Incerti A, Lachaal M, Ouerghi Z, Izzo R, Navari-Izzo F (2009) Relations between antioxidant activity and salinity in basil (Ocimum basilicum Mill.). J Med Plant Res 6:5868–5875

    Google Scholar 

  • Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152

    Article  CAS  Google Scholar 

  • Xu L, Yue Q, Bian F, Sun H, Zhai H, Yao Y (2017) Melatonin enhances phenolics accumulation partially via ethylene signaling and resulted in high antioxidant capacity in grape berries. Front Plant Sci 8:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197

    PubMed  PubMed Central  Google Scholar 

  • Zhao HX, Zhang HS, Yang SF (2014) Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Sci Human Wellness 3:183–190

    Article  Google Scholar 

  • Zilic S, Hadzi-Tasković V, Sukalović D, Dodig V, Maksimović M, Maksimovic Z (2011) Basic antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J Cereal Sci 54:417–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragbet Ezgi Duran.

Additional information

Editor: Gregory Phillips

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, R.E., Kilic, S. & Coskun, Y. Melatonin influence on in vitro callus induction and phenolic compound production in sweet basil (Ocimum basilicum L.). In Vitro Cell.Dev.Biol.-Plant 55, 468–475 (2019). https://doi.org/10.1007/s11627-019-10006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-10006-6

Keywords

Navigation