Skip to main content
Log in

Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L.

  • Functional Genomics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Virus-induced gene silencing (VIGS) is known as a rapid and efficient system for studying functions of interesting genes in plants. Tobacco rattle virus (TRV) is widely applied for the gene silencing of many plants. Although spinach is a TRV-susceptible plant, a TRV-based VIGS system has not yet been developed for spinach. In this study, we established a TRV-based VIGS system for spinach. To evaluate the functionality of the TRV-based VIGS system, the phytoene desaturase gene (SoPDS) was first isolated from spinach as a marker gene. Then, the VIGS vector pTRV2 was combined with the partial fragment of SoPDS gene in sense or antisense orientation. Using the Agrobacterium infiltration method, we introduced the pTRV2-SoPDS clone to silence the SoPDS gene in spinach. SoPDS was efficiently silenced, and consequently, greater than 90% of newly emerging leaves exhibited severe chlorosis symptoms in the treated plants. Levels of chlorosis symptoms were similar in both plants infected with pTRV2 vectors harboring sense (SoPDS_S) or antisense (SoPDS_A) gene fragments. Quantitative analysis of SoPDS gene expression by qRT-PCR revealed that gene expression was reduced by greater than 90% in both SoPDS_S and SoPDS_A VIGS plants. Chlorosis on leaves was prolonged up to 4~5 wk after Agrobacterium infiltration. The TRV-based VIGS system was effective in silencing the SoPDS gene in spinach, suggesting that it can be a useful reverse genetics tool for the functional study of spinach genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JC, Jiang CZ, Reid MS (2005) Silencing a prohibitin alters plant development and senescence. Plant J 44:16–24

    Article  CAS  PubMed  Google Scholar 

  • Chen LF, Vivoda E, Gilbertson RL (2011) Genetic diversity in curtoviruses: a highly divergent strain of beet mild curly top virus associated with an outbreak of curly top disease in pepper in Mexico. Arch Virol 156:547–555

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh SK, Lee S, Park JM, Joung YH, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  • Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L (2011) Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J 66:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal B, Sanfaçon H (2015) Symptom recovery in virus-infected plants: revisiting the role of RNA silencing mechanisms. Virology 479:167–179

    Article  PubMed  Google Scholar 

  • Gil MI, Ferreres F, Tomas-Barberan FA (1999) Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J Agric Food Chem 47:2213–2217

    Article  CAS  PubMed  Google Scholar 

  • Golenberg EM, Sather DN, Hancock LC, Buckley KJ, Villafranco NM, Bisaro DM (2009) Development of a gene silencing DNA vector derived from a broad host range geminivirus. Plant Methods 5:9. doi:10.1186/1746-4811-5-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hedges LJ, Lister CE (2007) Nutritional attributes of spinach, silver beet and eggplant. New Zealand Institute for Crop & Food Research Limited. Crop & Food Research Confidential Report No 1928:1–29

    Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Xie Y, Zhou X (2009) Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol J 7:254–265

    Article  CAS  PubMed  Google Scholar 

  • Jiaa HF, Guoa JX, Qina L, Shena YY (2010) Virus-induced PpCHLH gene silencing in peach leaves (Prunus persica). J Hortic Sci Biotechnol 85(6):528–532

    Article  Google Scholar 

  • Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    Article  CAS  PubMed  Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92:1679–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lester GE, Makus DJ, Hodges DM, Jifon JL (2013) Summer (subarctic) versus winter (subtropic) production affects spinach (Spinacia oleracea L.) leaf bionutrients: vitamins (C, E, folate, K1, provitamin A), lutein, phenolics, and antioxidants. J Agric Food Chem 61:7019–7027

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002a) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QV, Boo KH, Sun HJ, Cao DV, Lee D, Ko SH, Kang S, Yoon S, Kim SC, Park SP, Riu K-Z, Lee D-S (2013a) Evaluation of factors influencing Agrobacterium-mediated spinach transformation and transformant selection by EGFP fluorescence under low-selective pressure. In Vitro Cell Dev Biol Plant 49:498–509

    Article  CAS  Google Scholar 

  • Nguyen QV, Sun HJ, Boo KH, Lee D, Lee J-H, Lim PO, Lee HY, Riu K-Z, Lee D-S (2013b) Effect of plant growth regulator combination and culture period on in vitro regeneration of spinach (Spinacia oleracea L.). Plant Biotechnol Rep 7:99–108

    Article  Google Scholar 

  • Pacak A, Geisler K, Jorgensen B, Barciszewska-Pacak M, Nilsson L, Nielsen TH, Johansen E, Gronlund M, Jakobsen I, Albrechtsen M (2010) Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant Methods 6:26. doi:10.1186/1746-4811-6-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Choudhury NR, Mukherjee SK (2009) A geminiviral amplicon (VA) derived from tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector. Virology J 6:152. doi:10.1186/1743-422X-6-152

    Article  Google Scholar 

  • Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D (2001) Silencing of a meristematic gene using geminivirus-derived vectors. Plant J 27:357–366

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiol 149:152–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Sun J, Yao J, Wang S, Ding M, Zhang H, Qian Z, Zhao N, Sa G, Zhao R, Shen X, Polle A, Chen S (2015) High rates of virus-induced gene silencing by tobacco rattle virus in Populus. Tree Physiol 35(9):1016–1029

    Article  PubMed  Google Scholar 

  • Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850–860

    Article  CAS  PubMed  Google Scholar 

  • Turnage MA, Muangsan N, Peele CG, Robertson D (2002) Geminivirus based vectors for gene silencing in Arabidopsis. Plant J 30:107–114

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 2009:1–8

    Google Scholar 

  • Wang H, Chua NH, Wang XJ (2006) Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 7:R92. doi:10.1186/gb-2006-7-10-r92

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was performed with the support of the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011289032016),” the Rural Development Administration, Republic of Korea, and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0094059, 2016R1A6A1A03012862, and 2016R1D1A1B02012307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hwan Boo.

Additional information

Editor: Ewen Mullins

Jungmin Lee and Dang-Viet Cao contributed equally to this work.

Electronic supplementary material

ESM 1

(DOCX 73 kb)

ESM 2

(DOCX 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Cao, DV., Kim, J. et al. Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L.. In Vitro Cell.Dev.Biol.-Plant 53, 97–103 (2017). https://doi.org/10.1007/s11627-017-9806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9806-9

Keywords

Navigation