Skip to main content
Log in

In vitro differentiation of human pancreatic duct–derived PANC-1 cells into β-cell phenotype using Tinospora cordifolia

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Type 1 diabetes mellitus is an autoimmune disorder leading to loss of beta cells. There is a dire need to inhibit apoptosis and induce regeneration of new beta cells. There are plants in the Indian medicine system having the potential for rejuvenation. In the present study, we have attempted to evaluate the capacity of aqueous extract of Tinospora cordifolia to regenerate beta cells from PANC-1 ductal cells. After differentiation, the characterization of β-cell phenotype was carried out using dithizone and Gomori’s staining and further confirmed by mRNA expression study of insulin, Pdx-1, and carbonic anhydrase-9. Insulin production was estimated with ELISA. Aqueous extract of Tinospora cordifolia at 15 μg/ml concentration can effectively induce differentiation of PANC-1 cells into beta cells. The morphological observations showed brownish-colored dithizone and purple-colored Gomori’s staining. The β-cells demonstrated significant mRNA expression of insulin and Pdx-1 and downregulation of carbonic anhydrase-9. The functionality of beta cells was demonstrated by 1.5-fold increase in insulin secretion in response to high glucose. Tinospora cordifolia has potential to differentiate PANC-1 ductal cells into functional beta cells and can be a lead towards non-invasive treatment of type 1 diabetes mellitus.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Afelik S, Rovira M (2017) Pancreatic β-cell regeneration: facultative or dedicated progenitors? Mol Cell Endocrinol 445:85–94

    Article  CAS  Google Scholar 

  • Ansarullah, Bharucha B, Umarani M, Dwivedi M, Ladha N, Rasheedunnisa B, Hardikar A, Ramchandran A (2012) Oreocnide integrifolia flavonoids augment reprogramming for islet neogenesis and β-cell regeneration in pancreatectomized BALB/c mice. Evid Based Complement Alternat Med 2012:260467

  • Bonnevie-Nielsen V, Skovgaard L, Lernmark A (1983) β-cell functions relative to islet volume and hormone content in the isolated perfused mouse pancreas. Endocrinology 112:1049–1056

    Article  CAS  Google Scholar 

  • Chougale A, Ghadyale V, Panaskar S, Arvindekar A (2009) Alpha glucosidase inhibition by stem extract of Tinospora cordifolia. J Enzyme Inhib Med Chem 24:998–1001

    Article  CAS  Google Scholar 

  • Corritore E, Dugnani E, Pasquale V, Misawa R, Witkowski P, Lei J, Markmann J, Piemonti L, Sokal E, Bonner-Weir S, Lysy P (2014) β-cell differentiation of human pancreatic duct derived cells after in vitro expansion. Cell Rep 16:456–466

    CAS  Google Scholar 

  • Dadheech N, Soni S, Srivastava A, Dadheech S, Gupta S, Gopurappilly R, Bhonde RR, Gupta S (2013) A small molecule Swertisin from Enicostemma Littorale differentiates NIH3T3 cells into islet like clusters and restores normoglycemia upon transplantation in diabetic Balb/c Mice. Evid Based Complement Alternat Med 2013:280392

    Article  Google Scholar 

  • Damame H, Rooge S, Patil R, Garad C, Arvindekar A (2021) Beta cell protective effect of Curcuma longa and Piper nigrum in cytokine cocktail induced apoptosis in Min6 pancreatic beta cells. Phytomedicine Plus 1:100072

    Article  Google Scholar 

  • Donadel G, Pastore D, Della-Morte D, Capuani B, Lombardo MF, Pacifici F, Bugliani M, Grieco FA, Marchetti P, Lauro D (2017) FGF-2b and h-PL transform duct and non-endocrine human pancreatic cells into endocrine insulin secreting cells by modulating differentiating genes. Int J Mol Sci 18:2234

    Article  Google Scholar 

  • Gupta S, Dadheech N, Singh A, Soni S, Bhonde R (2010) Enicostemma Littorale: a new therapeutic target for islet neogenesis. Int J Integr Biol 9:49

    Google Scholar 

  • Halban P, German M, Kahn S, Weir G (2010) Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 95:1034–1043

    Article  CAS  Google Scholar 

  • Hansen W, Christie M, Kahn R, Norgaard A, Abel I, Petersen A, Jorgensen D, Baekkeskov S, Nielsen J, Lernmark A et al (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 10:53–57

    CAS  PubMed  Google Scholar 

  • Hohmeier H, Zhang L, Taylor B, Stephens S, Lu D, McNamara P, Laffitte B, Newgard C (2020) Identification of a small molecule that stimulates human β-cell proliferation and insulin secretion, and protects against cytotoxic stress in rat insulinoma cells. PLoS One 15:e0224344

    Article  CAS  Google Scholar 

  • Hui H, Perfetti R (2002) Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol 146:129–141

    Article  CAS  Google Scholar 

  • Hwang Y, Cha SH, Hong Y, Jung A, Jun HS (2019) Direct differentiation of insulin-producing cells from human urine-derived stem cells. Int J Med Sci 16:1668–1676

    Article  CAS  Google Scholar 

  • Jacobson E, Tzanakakis E (2017) Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. J Biol Eng 11:21

    Article  Google Scholar 

  • Jiang Y, Jahagirdar B, Reinhardt R, Schwartz R, Keene C, Ortiz-Gonzalez X, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low W, Largaespada D, Verfaillie C (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  Google Scholar 

  • Juhász M, Chen J, Lendeckel U, Kellner U, Kasper H, Tulassay Z, Pastorekova S, Malfertheiner P, Ebert M (2003) Expression of carbonic anhydrase IX in human pancreatic cancer. Aliment Pharmacol Ther 18:837–846

    Article  Google Scholar 

  • Kojima I, Umezawa K (2006) Conophylline: a novel differentiation inducer for pancreatic beta cells. Int J Biochem Cell Biol 38:923–930

    Article  CAS  Google Scholar 

  • Latif ZA, Noel J, Alejandro R (1988) A simple method of staining fresh and cultured islets. Transplantation 45:827–830

    Article  CAS  Google Scholar 

  • Lee Y, Yi H, Seo E, Oh J, Lee S, Ferber S, Okano T, Shim I, Kim S (2021) Improvement of the therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet. Stem Cell Res Ther 12:3

    Article  CAS  Google Scholar 

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of continuous cell line (PANC-1) from human carcinoma of the exocrine pancreas. Int J Cancer 15:741–749

    Article  CAS  Google Scholar 

  • Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    Article  CAS  Google Scholar 

  • Mezey E, Key S, Vogelsang G, Szalayova I, Lange G, Crain B (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A 100:1364–1369

    Article  CAS  Google Scholar 

  • Moshtagh P, Emami S, Sharifi A (2013) Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study. J Physiol Biochem 69:451–458

    Article  CAS  Google Scholar 

  • Pagliuca F, Melton D (2013) How to make a functional β-cell. Development 140:2472–2483

    Article  CAS  Google Scholar 

  • Qadir M, Álvarez-Cubela S, Klein D, Lanzoni G, García-Santana C, Montalvo A, Pláceres-Uray F, Mazza E, Ricordi C, Inverardi L, Pastori R, Domínguez-Bendala J (2018) P2RY1/ALK3-expressing cells within the adult human exocrine pancreas are BMP-7 expandable and exhibit progenitor-like characteristics. Cell Rep 22:2408–2420

    Article  CAS  Google Scholar 

  • Rahier J, Guiot Y, Goebbels R, Sempoux C, Henquin J (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 4:32–42

    Article  Google Scholar 

  • Rajalakshmi M, Anita R (2016) β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of Tinospora cordifolia stem on streptozotocin-induced diabetic Wistar rats. Chem Biol Interact 243:45–53

    Article  CAS  Google Scholar 

  • Scott H (1952) Rapid staining of beta cell granules in pancreatic islets. Stain Technol 27:267–268

    Article  CAS  Google Scholar 

  • Sharma R, Amin H, Galib PP (2015) Antidiabetic claims of Tinospora cordifolia (wild.) milers: critical appraisal and role of therapy. Asian Pac J Trop Biomed 5:68–78

    Article  CAS  Google Scholar 

  • Xia B, Zhan X, Yi R, Yang B (2009) Can pancreatic duct-derived progenitors be a source of islet regeneration? Biochem Biophys Res Commun 383:383–385

    Article  CAS  Google Scholar 

  • Yang XF, Zhou SY, Wang C, Huang W, Li N, He F, Li FR (2020) Inhibition of LSD1 promotes the differentiation of human induced pluripotent stem cells into insulin-producing cells. Stem Cell Res Ther 11:185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hemangee Damame acknowledges DST PURSE Phase II Programme and Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune, for providing financial assistance. The authors acknowledge with gratitude Rastriya Uchatar Shiksha Abhiyan (RUSA) Govt. of Maharashtra, Major Research Projects awarded to Prof. Akalpita Arvindekar, for supporting the research work. Authors also express gratitude to DST PURSE Phase II Programme for infrastructure support.

Author information

Authors and Affiliations

Authors

Contributions

Akalpita Arvindekar and Chandramukhi Garad: conceptualization. Akalpita Arvindekar: planning of experiments and funding acquisition. Hemangee Damame and Sheetalnath Rooge: data curation, formal analysis, investigation, methodology. Hemangee Damame, Sheetalnath Rooge and Rahul Patil: software and supervision. All authors have equally contributed in validation, visualization, writing of original draft, review and editing of the manuscript.

Corresponding author

Correspondence to Akalpita Arvindekar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damame, H., Rooge, S., Patil, R. et al. In vitro differentiation of human pancreatic duct–derived PANC-1 cells into β-cell phenotype using Tinospora cordifolia. In Vitro Cell.Dev.Biol.-Animal 58, 376–383 (2022). https://doi.org/10.1007/s11626-022-00690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00690-x

Keywords

Navigation