Skip to main content

Advertisement

Log in

Rhynchophorus ferrugineus midgut cell line to evaluate insecticidal potency of different plant essential oils

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cell cultures can be a potent and strong tool to evaluate the insecticidal efficiency of natural products. Plant essential oils have long been used as the fragrance or curative products around the world which means that they are safer to be used in close proximity of humans and mammals. In this study, a midgut cell line, developed from Rhynchophorus ferrugineus (RPW-1), was used for screening essential oils from nine different plants. Assays revealed that higher cell mortality was observed at 500 ppm which reached to 86, 65, 60, 59, 56, 54, 54, 53, and 53%, whereas lowest cell mortality at 1 ppm remained at 41, 23, 20, 17, 16, 15, 14, 13, and 10%, for Azadirachta indica, Piper nigrum, Mentha spicata, Cammiphora myrrha, Elettaria cardamomum, Zingiber officinale, Curcuma longa, Schinus molle, and Rosmarinus officinalis, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assay revealed the percentage of cell growth inhibition was highest at 500 ppm and remained at 48, 45, 42, 37, 34, 29, 24, 22, and 18% against A. indica, P. nigrum, M. spicata, C. myrrha, E. cardamomum, Z. officinale, C. longa, S. molle, and R. officinalis, respectively. Lowest LC50 value (7.98 ppm) was found for A. indica, whereas the highest LC50 (483.11 ppm) was against R. officinalis. Thus, in this study, essential oils of A. indica exhibited the highest levels of toxicity, whereas those from R. officinalis exhibited the lowest levels of toxicity toward RPW-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Abbasipour H, Mahmoudvand M, Rastegar F, Hosseinpour MH (2011) Fumigant toxicity and oviposition deterrency of the essential oil from cardamom, Elettaria cardamomum, against three stored–product insects. J Insect Sci 11:165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abid H, Muhammad R, Ahmed MA, Hassan YA (2013) Managing invasive populations of red palm weevil: a worldwide perspective. J Food Agric Environ 11:456–463

    Google Scholar 

  • Aljabr AM, Rizwan-ul-Haq M, Hussain A, Al-Mubarak AI, Al-Ayied HY (2014) Establishing midgut cell culture from Rhynchophorus ferrugineus (Olivier) and toxicity assessment against ten different insecticides. In Vitro Cell Dev Biol-Animal 50:296–303

    Article  CAS  Google Scholar 

  • Anuradha A, Annadurai RS, Shashidhara LS (2007) Actin cytoskeleton as a putative target of the neem limonoid azadirachtin A. Insect Biochem Mol Biol 37:627–634

    Article  CAS  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Burdock G.A. (2010) Fenaroli’s handbook of flavour ingredients. Taylor and Francis group. Orlando: CRC Press. 2159 p

  • Chiasson H, Belanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthiumand Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol 94:167–171

    Article  CAS  PubMed  Google Scholar 

  • Choi WI, Lee EH, Choi BR, Park HM, Ahn YJ (2003) Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 96:1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Escriba M, Barbut M, Eras J, Canela R, Avilla J, Balcells M (2009) Synthesis of allyl esters of fatty acids and their ovicidal effect on Cydia pomonella (L.). J Agric Food Chem 57:4849–4853

    Article  CAS  PubMed  Google Scholar 

  • Faleiro JR (2006) A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26:135–154

    CAS  Google Scholar 

  • Giner M, Avilla J, Balcells M, Caccia S, Smagghe G (2012) Toxicity of allyl esters in insect cell lines and in Spodoptera littoralis larvae. Arch Insect Biochem Physiol 79:18–30

    Article  CAS  PubMed  Google Scholar 

  • Grasela JJ, McIntosh AH, Ringbauer JJ, Goodman CL, Carpenter JE, Popham HJ (2012) Development of cell lines from the cactophagous insect: Cactoblastis cactorum (Lepidoptera: Pyralidae) and their susceptibility to three baculoviruses. In Vitro Cell Dev Biol-Animal 48:293–300

    Article  CAS  Google Scholar 

  • Grimm C, Schmidli H, Bakker F, Brown K, Campbell P, Candol WM, Chapman P, Harrison EG, Mead-Briggs M, Schmuck R, Ufer A (2001) Use of standard toxicity tests with Typhlodromus pyri and Aphidius rhopalosiphi to establish a dose–response relationship. J Pest Sci 74:72–84

    Google Scholar 

  • Hakim RS, Baldwin KM, Loeb M (2001) The role of stem cells in midgut growth and regeneration. In Vitro Cell Dev Biol- Animal 37:338–342

    CAS  Google Scholar 

  • Huang JF, Tian M, LV CJ, Li HY, Muhammad R, Zhong GH (2011) Preliminary studies on induction of apoptosis by abamectin in Spodoptera frugiperda (Sf9) cell line. Pestic Biochem Physiol 100:256–263

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, BV, pp 29–44

    Chapter  Google Scholar 

  • Jingfei H, Kejuan S, Hai-yi L, Meiying H, Guohua Z (2011) Antiproliferative effect of azadirachtin A on Spodoptera litura Sl-1 cell line through cell cycle arrest and apoptosis induced by up-regulation of p53. Pestic Biochem Physiol 99:16–24

    Article  Google Scholar 

  • Knaak N, Berlitz D.L., Fiuza L.M. (2012) Toxicology of bioinsecticides used in agricultural food production, São Paulo, Brazil, DOI: 10.5772/52070

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Haaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Koul O, Walia S, Dhliwal GS (2008) Essential oils as pesticides: potential and constrainsts. Biopestic Int 41:63–84

    Google Scholar 

  • Kumar RP, Manoj MN, Kush A, Annadurai RS (2007) In silico approach of azadirachtin binding with actins. Insect Biochem Mol Biol 37:635–640

    Article  CAS  Google Scholar 

  • Laurent D, Vilaseca LA, Chantraine JM, Ballivian C, Gloria S, Ibanez R (1997) Insecticidal activity of essential oils on Triatoma infestans. Phytotherapy Res 11:285–290

    Article  CAS  Google Scholar 

  • Leelaja BC, Rajashekar Y, Reddy PV, Begum K, Rajendran S (2007) Fumigant toxicity of allyl acetate to stored-product beetles in the presence of carbon dioxide. J Stored Prod Res 43:45–48

    Article  CAS  Google Scholar 

  • Mahmoud MA, Hamadttu AE, Ibrahim A (2013) Toxicity of bio-insecticides Abamectin, on red palm weevil, Rhynchophorus ferrugineus (Olivier). Int J Agric Sci Res 2:107–115

    Google Scholar 

  • Marchial CM, Shikano I, Smirle M, Bradbury R, Isman R (2010) Evaluation of the toxicity of 17 essential oils against Choristoneura rosacerana (Lepidoptera: Tortricidae) and Trichoplusia ni (Lepidotera: Noctuidae). Pest Manag Sci 66:1116–1121

    Article  Google Scholar 

  • Nandi A, Chandi D, Lechesa R, Pryor SC, Mclaughlin A, Bonventre JA, Flynn K, Weeks BS (2006) Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neuro degeneration. Med Sci Monit 12:169–17

    Google Scholar 

  • Oh H, Livingston R, Smith K, Abrishamian GL (2004) Comparative study of the time dependency of cell death assays. MURJ 11:53–62

    Google Scholar 

  • Oliveira MJ, Campos IFP, Oliveira CBA, Santos MR, Souza PS, Santos SC, Seraphin JC, Ferri PH (2005) Influence of growth phase on the essential oil composition of Hyptis suaveoleni. Biochem Syst Ecol 33:275–285

    Article  CAS  Google Scholar 

  • Perumalsamy H, Chang KS, Park C, Ahn YJ (2010) Larvicidal activity of Asarum heterotropoides root constituents against insecticide susceptible and resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem 58:10001–11006

    Article  CAS  PubMed  Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampson BJ, Tabanca N, Kirimer N, Demirci B, Baser KHC, Khan IA, Spiers JM, Wedge DE (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag Sci 61:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • SAS (2000) Sas user’s guide: statistics. Sas Institute, Cary

  • Sedy KA, Koschier EH (2003) Bioactivity of carvacrol and thymol, against Frankliniella occidentalis and Thrips tabaci. J Appl Entomol 127:313–316

    Article  CAS  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol-Animal 45:93–105

    Article  Google Scholar 

  • Sonoda S, Tsumuki H (2007) Induction of heat shock protein genes by chlorfenapyr in cultured cells of the cabbage armyworm, Mamestra brassicae. Pestic Biochem Physiol 89:185–189

    Article  CAS  Google Scholar 

  • Yang YC, Lee SH, Clark JM, Ahn YJ (2009) Ovicidal and adulticidal activities of Origanum mejorana essential oils constituents against insecticide-susceptible and pyrethroid/malathion-resistant Pediculus humanus capitis (Anoplura: Pediculidae). J Agric Food Chem 57:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Yoon JY, Oh SH, Yoo SM, Lee SJ, Lee HS, Choi SJ, Moon CK, Lee BH (2001) N-Nitrosocarbofuran, but carbofuran, induces apoptosis and cell cycle arrest in CHL cells. Toxicology 169:153–161

    Article  CAS  PubMed  Google Scholar 

  • Yuan HB, Shang LN, Wei CY, Ren BZ (2010) Comparison of constituents and insecticidal activities of essential oil from Artemisia lavandulaefolia by steam distillation and supercritical-CO2 fluid extraction. Chem Res Chinese Univ 26:888–892

    CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the role of King Abdul Aziz City of Science and Technology (KACST) for providing research funding under the grant no. 08-BIO 10–6 to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohammed Aljabr.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan-ul-Haq, M., Aljabr, A.M. Rhynchophorus ferrugineus midgut cell line to evaluate insecticidal potency of different plant essential oils. In Vitro Cell.Dev.Biol.-Animal 51, 281–286 (2015). https://doi.org/10.1007/s11626-014-9825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9825-3

Keywords

Navigation