Skip to main content
Log in

A combined iCEEMDAN and VMD method for mitigating the impact of ionospheric scintillation on GNSS signals

  • Research Article - Atmospheric & Space Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Severe amplitude and phase scintillation induced by the ionospheric plasma density irregularities degrades the performance of global navigation satellite system (GNSS) receivers. Scintillation typically has adverse effects at the tracking process and thus adversely affects the raw GNSS measurements used in a number of applications. Hence, it is important to develop robust methodologies for detecting and mitigating ionospheric effects on the GNSS signals. In this paper, we propose a novel method based on the combination of improved complete ensemble empirical mode decomposition with adaptive noise (iCEEMDAN) and variational mode decomposition (VMD) methods. The proposed method employs a detrended fluctuation analysis (DFA)-based metric for robust thresholding between the scintillation-free and amplitude scintillated GNSS signals. The major contribution of the proposed method is development of novel approaches for selection of intrinsic mode functions (IMFs) based on DFA and optimised selection of [K, \({\alpha }\)] parameters of the VMD. The performance of the proposed method was evaluated and was observed that it is better than existing ionospheric scintillation effects mitigation algorithms for both simulated and real-time GPS scintillation datasets. The proposed method can denoise approximately 9.23–15.30 dB scintillation noise from the synthetic and 0.2–0.48 from the real scintillation index (\(S_{4}\)) values. Therefore, the proposed (iCEEMDAN-VMD) method is appropriate for mitigating the ionospheric scintillation effects on the GNSS signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed A, Tiwari R, Strangeways H, Rutter N, Boussakta S (2014) GPS tracking loop performance using wavelet denoising. In: The 7th ESA workshop on Satellite Navigation Technologies (NAVITEC 2014), Space Research and Technology Centre, European Space Agency (ESA/ESTEC), Newcastle University

  • Ahmed WA, Wu F, Marlia D, Zhao Y et al (2019) Mitigation of ionospheric scintillation effects on GNSS signals with VMD-MFDFA. Remote Sens 11(23):2867

    Article  Google Scholar 

  • Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navig 58(2):241

    Article  Google Scholar 

  • Cervera M, Thomas R (2006) Latitudinal and temporal variation of equatorial ionospheric irregularities determined from GPS scintillation observations. Ann Geophys Copernicus GmbH 24:3329–3341

    Article  Google Scholar 

  • Colominas MA, Schlotthauer G, Torres ME (2014) Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Control 14:19–29

    Article  Google Scholar 

  • De Rezende L, De Paula E, Kantor I, Kintner P (2007) Mapping and survey of plasma bubbles over Brazilian territory. J Navig 60(1):69

    Article  Google Scholar 

  • Dragomiretskiy K, Zosso D (2013) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  Google Scholar 

  • Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11(2):112–114

    Article  Google Scholar 

  • Ganguly S, Jovancevic A, Brown A, Kirchner M, Zigic S, Beach T, Groves KM (2004) Ionospheric scintillation monitoring and mitigation using a software GPS receiver. Radio Sci 39(1):1–9

    Article  Google Scholar 

  • Han J, van der Baan M (2013) Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78(2):O9–O19. https://doi.org/10.1190/geo2012-0199.1

    Article  Google Scholar 

  • Honório BCZ, de Matos MC, Vidal AC (2017) Progress on empirical mode decomposition-based techniques and its impacts on seismic attribute analysis. Interpretation 5(1):SC17–SC28

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995

    Article  Google Scholar 

  • Humphreys TE, Psiaki ML, Hinks JC, O’Hanlon B, Kintner PM (2009) Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J Sel Top Signal Process 3(4):707–715

    Article  Google Scholar 

  • Jakowski N, Mayer C, Wilken V, Hoque MM (2008) Ionospheric impact on GNSS signals. Física de la Tierra 20:11

    Google Scholar 

  • Jiang X, Shen C, Shi J, Zhu Z (2018) Initial center frequency-guided VMD for fault diagnosis of rotating machines. J Sound Vib 435:36–55

    Article  Google Scholar 

  • Kintner PM, Kil H, Beach TL, de Paula ER (2001) Fading timescales associated with GPS signals and potential consequences. Radio Sci 36(4):731–743

    Article  Google Scholar 

  • Kintner PM, Ledvina BM, De Paula E (2007) GPS and ionospheric scintillations. Space Weather 5(9):1–23

    Article  Google Scholar 

  • Lahmiri S, Boukadoum M (2014) Biomedical image denoising using variational mode decomposition. In: 2014 IEEE biomedical circuits and systems conference (BioCAS) proceedings, IEEE, pp 340–343

  • Li H, Liu T, Wu X, Chen Q (2020) An optimized VMD method and its applications in bearing fault diagnosis. Measurement 166:108185

    Article  Google Scholar 

  • Liu Y, Yang G, Li M, Yin H (2016) Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process 125:349–364

    Article  Google Scholar 

  • Liu W, Cao S, Jin Z, Wang Z, Chen Y (2017) A novel hydrocarbon detection approach via high-resolution frequency-dependent AVO inversion based on variational mode decomposition. IEEE Trans Geosci Remote Sens 56(4):2007–2024

    Article  Google Scholar 

  • Mert A, Akan A (2014) Detrended fluctuation thresholding for empirical mode decomposition based denoising. Dig Signal Process 32:48–56

    Article  Google Scholar 

  • Miriyala S, Koppireddi PR, Chanamallu SR (2015) Robust detection of ionospheric scintillations using MF-DFA technique. Earth Planets Space 67(1):98

    Article  Google Scholar 

  • Mushini SC, Jayachandran P, Langley R, MacDougall J, Pokhotelov D (2012) Improved amplitude-and phase-scintillation indices derived from wavelet detrended high-latitude GPS data. GPS Solut 16(3):363–373

    Article  Google Scholar 

  • Nalband S, Prince A, Agrawal A (2017) Entropy-based feature extraction and classification of vibroarthographic signal using complete ensemble empirical mode decomposition with adaptive noise. IET Sci Meas Technol 12(3):350–359

    Article  Google Scholar 

  • Navarro X, Porée F, Carrault G (2012) ECG removal in preterm EEG combining empirical mode decomposition and adaptive filtering. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 661–664

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685

    Article  Google Scholar 

  • Pullen S, Park YS, Enge P (2009) Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS. Radio Sci 44(01):1–10

    Article  Google Scholar 

  • Ratnam DV, Sivavaraprasad G, Lee J (2015) Automatic ionospheric scintillation detector for global navigation satellite system receivers. IET Radar Sonar Navig 9(6):702–711

    Article  Google Scholar 

  • Ruan H, Zhang L, Luo Y, Long T (2016) GNSS carrier phase tracking with discrete wavelet transform filtering under ionospheric scintillation. IEEE Commun Lett 21(2):394–397

    Article  Google Scholar 

  • Sivavaraprasad G, Padmaja RS, Ratnam DV (2017) Mitigation of ionospheric scintillation effects on GNSS signals using variational mode decomposition. IEEE Geosci Remote Sens Lett 14(3):389–393

    Article  Google Scholar 

  • Smith JS (2005) The local mean decomposition and its application to EEG perception data. J R Soc Interface 2(5):443–454

    Article  Google Scholar 

  • Tadivaka RV, Paruchuri BP, Miriyala S, Koppireddi PR, Devanaboyina VR (2017) Detection of ionospheric scintillation effects using LMD-DFA. Acta Geophys 65(4):777–784

    Article  Google Scholar 

  • Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 4144–4147

  • Upadhyay A, Pachori R (2017) Speech enhancement based on MEMD-VMD method. Electron Lett 53(7):502–504

    Article  Google Scholar 

  • Valladares C, Chau J (2012) The low-latitude ionosphere sensor network: initial results. Radio Sci 47(04):1–18

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41

    Article  Google Scholar 

  • Yeh JR, Shieh JS, Huang NE (2010) Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2(02):135–156

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful and would like to acknowledge Low-Latitude Ionospheric Sensor Network (LISN), Brazil, and Cornell Scintillation Model (CSM) for providing the dataset used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Dey.

Ethics declarations

Conflict of interest

On behalf of all authors, I state that there is no conflict of interest.

Additional information

Communicated by Prof. Stelios Stoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, A., Chhibba, R., Ratnam, D.V. et al. A combined iCEEMDAN and VMD method for mitigating the impact of ionospheric scintillation on GNSS signals. Acta Geophys. 69, 1933–1948 (2021). https://doi.org/10.1007/s11600-021-00629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00629-y

Keywords

Navigation