Skip to main content
Log in

Damage evolution and crack propagation in rocks with dual elliptic flaws in compression

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

To give an insight into the understanding of damage evolution and crack propagation in rocks, a series of uniaxial and biaxial compression numerical tests are carried out. The investigations show that damage evolution occurs firstly in the weak rock, the area around the flaw and the area between the flaw and the neighboring rock layer. Cracks mostly generate as tensile cracks under uniaxial compression and shear cracks under biaxial compression. Crack patterns are classified and divided. The relationship between the accumulated lateral displacement and the short radius (b) is fitted, and the equation of crack path is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, C.G. Sammis, The damage mechanics of brittle solids in compression, Pure Appl. Geophys. 133 (1990) 489–521.

    Article  Google Scholar 

  2. R. Weinberger, Joint nucleation in layered rocks with non-uniform distribution of cavities, J. Struct. Geol. 23 (2001) 1241–1254.

    Article  Google Scholar 

  3. B. Larsen, A. Gudmundsson, Linking of fractures in layered rocks: implications for permeability, Tectonophysics 492 (2010) 108–120.

    Article  Google Scholar 

  4. M.R. Gross, Y. Eyal, Throughgoing fractures in layered carbonate rocks, Geol. Soc. Am. Bull. 119 (2007) 1387–1404.

    Article  Google Scholar 

  5. E.Z. Lajtai, A theoretical and experimental evaluation of the Griffith theory of brittle fracture, Tectonophysics 11 (1971) 129–159.

    Article  Google Scholar 

  6. S. Nemat-Nasser, H. Horii, Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst, J. Geophys. Res. Atmos. 87 (1982) 6805–6821.

    Article  Google Scholar 

  7. R.H.C. Wong, K.T. Chau, Crack coalescence in a rock-like material containing two cracks, Int. J. Rock Mech. Min. Sci. 35 (1998) 147–164.

    Article  Google Scholar 

  8. A. Bobet, H.H. Einstein, Fracture coalescence in rock-type materials under uniaxial and biaxial compression, Int. J. Rock Mech. Min. Sci. 35 (1998) 863–888.

    Article  Google Scholar 

  9. L.N.Y. Wong, H.H. Einstein, Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation, Rock Mech. Rock Eng. 42 (2009) 475–511.

    Article  Google Scholar 

  10. S.Q. Yang, X.R. Liu, H.W. Jing, Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Int. J. Rock Mech. Min. Sci. 63 (2013) 82–92.

    Google Scholar 

  11. H.D. Tang, Z.D. Zhu, M.L. Zhu, H.X. Lin, Mechanical behavior of 3D crack growth in transparent rock-like material containing preexisting flaws under compression, Adv. Mater. Sci. Eng. 2015 (2015) 1–10.

    Google Scholar 

  12. S.Q. Yang, Y.H. Huang, W.L. Tian, J.B. Zhu, An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression, Eng. Geol. 217 (2017) 35–48.

    Article  Google Scholar 

  13. B. Larsen, A. Gudmundsson, Linking of fractures in layered rocks: implications for permeability, Tectonophysics 492 (2010) 108–120.

    Article  Google Scholar 

  14. L. Guo, J.P. Latham, J. Xiang, A numerical study of fracture spacing and through-going fracture formation in layered rocks, Int. J. Solids Struct. 110–111 (2017) 44–57.

    Article  Google Scholar 

  15. D.P. Xu, X.T. Feng, D.F. Chen, C.Q. Zhang, Q.X. Fan, Constitutive representation and damage degree index for the layered rock mass excavation response in underground openings, Tunnelling Underground Space Technol. 64 (2017) 133–145.

    Article  Google Scholar 

  16. X. Shi, X. Yang, Y. Meng, G. Li, An anisotropic strength model for layered rocks considering planes of weakness, Rock Mech. Rock Eng. 49 (2016) 3783–3792.

    Article  Google Scholar 

  17. X. Chang, Y. Shan, Z. Zhang, C. Tang, Z. Ru, Behavior of propagating fracture at bedding interface in layered rocks, Eng. Geol. 197 (2015) 33–41.

    Article  Google Scholar 

  18. D.J. Green, P.S. Nicholson, J.D. Embury, Crack shape studies in brittle porous materials, J. Mater. Sci. 12 (1977) 987–989.

    Article  Google Scholar 

  19. I.G. Abdul’manov, N.S. Krasílova, V.A. Maksimenko, V.P. Netrebko, N.P. Novikov, Influence of the shape of an inclusion on the stress distribution in rock, J. Min. Sci. 24 (1988) 43–46.

    Google Scholar 

  20. M.R. Du, H.W. Jing, H.J. Su, T.T. Zhu, Effects of hole’s geometrical shape on strength and failure characteristics of a sandstone sample containing a single hole, Eng. Mech. 33 (2016) 190–196 (in Chinese).

    Google Scholar 

  21. J. Jaeger, N.G. Cook, R.W. Zimmerman, R. Zimmerman, Fundamentals of Rock Mechanics, Blackwell, 2007.

  22. S.Y. Li, T.M. He, X.C. Yin, Rock Fracture Mechanics, Science Press, 2016 (in Chinese).

  23. H. Lan, C.D. Martin, B. Hu, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading, J. Geophys. Res. Atmos. 115 (2010) 414–431.

    Article  Google Scholar 

  24. C.A. Tang, S.Q. Kou, Crack propagation and coalescence in brittle materials under compression, Eng. Fract. Mech. 61 (1998) 311–324.

    Article  Google Scholar 

  25. J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin Heidelberg, 1992.

    Book  Google Scholar 

  26. G. Chen, J. Kemeny, S. Harpalani, Fracture propagation and coalescence in marble plates with pre-cut notches under compression, in: Symposium on Fracture and Jointed Rock Mass, Lake Taho, CA, 1992, pp. 443–448.

  27. G. Li, C.A. Tang, A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock, Int. J. Rock Mech. Min. Sci. 74 (2015) 133–150.

    Article  Google Scholar 

  28. X.P. Zhang, Q. Liu, S. Wu, X. Tang, Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression, Eng. Geol. 199 (2015) 74–90.

    Article  Google Scholar 

  29. Y. Zhao, L. Zhang, W. Wang, C. Pu, W. Wan, Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mech. Rock Eng. 49 (2016) 2665–2687.

    Article  Google Scholar 

  30. H. Haeri, V. Sarfarazi, M.F. Marji, A. Hedayat, Z. Zhu, Experimental and numerical study of shear fracture in brittle materials with interference of initial double cracks fracture analyses of different pre-holed concrete specimens under compression, Acta Mech. Solida Sin. 29 (2016) 555–566.

    Article  Google Scholar 

  31. L.O. Afolagboye, J. He, S. Wang, Experimental study on cracking behaviour of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression, Acta Mech. Sin. 33 (2017) 394–405.

    Article  Google Scholar 

  32. Q. Li, Q. Yang, M. Luan, Study of curved wing crack path by theory and testing methods, Rock Soil Mech. 31 (2010) 345–349 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, Z. Damage evolution and crack propagation in rocks with dual elliptic flaws in compression. Acta Mech. Solida Sin. 30, 573–582 (2017). https://doi.org/10.1016/j.camss.2017.11.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.camss.2017.11.001

Keywords

Navigation