Skip to main content
Log in

Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Ischemic stroke leads to high potentiality of mortality and disability. The current treatment for ischemic stroke is mainly focused on intravenous thrombolytic therapy. However, ischemia/ reperfusion induces neuronal damage, which significantly influences the outcome of patients with ischemic stroke, and the exact mechanism implicated in ischemia/reperfusion injury remains unclear, although evidence shows that oxidative stress is likely to be involved. Betulinic acid is mainly known for its anti-tumor and anti-inflammatory activities. Our previous study showed that betulinic acid could decrease the reactive oxygen species (ROS) production by regulating the expression of NADPH oxidase. Thus, we hypothesized that betulinic acid may protect against brain ischemic injury in the animal model of stroke. Focal cerebral ischemia was achieved by using the standard intraluminal occlusion method and reperfusion enabled after 2 h ischemia. Neurological deficits were scored. Infarct size was determined with 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and the mRNA expression of NADPH oxidase 4 (NOX4) was determined by RT-PCR in infarct tissue. ROS generation and apoptosis in ischemic tissue were analyzed by measuring the oxidative conversion of cell permeable 2’,7’-dichloro-fluorescein diacetate (DCF-DA) to fluorescent dichlorofluorescein (DCF) in fluorescence microplate reader and TUNEL assay, respectively. In Kunming mice, 2 h of middle cerebral artery (MCA) occlusion followed by 24 or 72 h of reperfusion led to an enhanced NOX4 expression in the ischemic hemisphere. This was associated with elevated levels of ROS generation and neuronal apoptosis. Pre-treatment with betulinic acid (50 mg/kg/day for 7 days via gavage) prior to MCA occlusion prevented the ischemia/reperfusion-induced up-regulation of NOX4 and ROS production. In addition, treatment with betulinic acid could markedly blunt the ischemia/reperfusion-induced neuronal apoptosis. Finally, betulinic acid reduced infarct volume and ameliorated the neurological deficit in this stroke mouse model. Our results suggest that betulinic acid protects against cerebral ischemia/reperfusion injury in mice and the down-regulation of NOX4 may represent a mechanism contributing to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshah NF. Lifestyle and health promoting behaviours in jordanian subjects without prior history of coronary heart disease. Int J Nurs Pract, 2011,17(1):27–35

    Article  PubMed  Google Scholar 

  2. Suda S, Katsumata T, Okubo S, et al. Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. Cerebrovasc Dis, 2013,36(5-6): 388–393

    Article  CAS  PubMed  Google Scholar 

  3. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol Med, 2005,39(4):429–443

    Article  CAS  PubMed  Google Scholar 

  4. Appelros P, Jonsson F, Asberg S, et al. Trends in stroke treatment and outcome between 1995 and 2010: Observations from riks-stroke, the swedish stroke register. Cerebrovasc Dis, 2014,37(1):22–29

    Article  CAS  PubMed  Google Scholar 

  5. Koga M, Arihiro S, Miyashita F, et al. Factors associated with early recanalization failure following intravenous rt-pa therapy for ischemic stroke. Cerebrovasc Dis, 2013,36(4): 299–305

    Article  PubMed  Google Scholar 

  6. Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal, 2008,10(10):1713–1765

    Article  CAS  PubMed  Google Scholar 

  7. Chrissobolis S, Faraci FM. The role of oxidative stress and nadph oxidase in cerebrovascular disease. Trends Mol Med, 2008,14(11):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007,87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  9. Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal, 2011,14(8):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal, 2014,20(17):2815–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCann SK, Roulston CL. NADPH oxidase as a therapeutic target for neuroprotection against ischaemic stroke: future perspectives. Brain Sci, 2013,3(2):561–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serrano F, Kolluri NS, Wientjes FB, et al. Nadph oxidase immunoreactivity in the mouse brain. Brain Res, 2003,988(1-2):193–198

    Article  CAS  PubMed  Google Scholar 

  13. Qin YY, Li M, Feng X, et al. Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med, 2017,104:333–345

    Article  CAS  PubMed  Google Scholar 

  14. Walder CE, Green SP, Darbonne WC, et al. Ischemic stroke injury is reduced in mice lacking a functional nadph oxidase. Stroke, 1997,28(11):2252–2258

    Article  CAS  PubMed  Google Scholar 

  15. Radermacher KA, Wingler K, Langhauser F, et al. Neuroprotection after stroke by targeting nox4 as a source of oxidative stress. Antioxid Redox Signal, 2013,18(12): 1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced nadph oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol, 2010, 8(9):e1000479

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mullauer FB, Kessler JH, Medema JP. Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs, 2010,21(3):215–227

    Article  CAS  PubMed  Google Scholar 

  18. Lu Q, Xia N, Xu H, et al. Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide, 2011,24(3): 132–138

    Article  CAS  PubMed  Google Scholar 

  19. Jiao S, Zhu H, He P, et al. Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Biomed Pharmacother, 2016,84:1533–1537

    Article  CAS  PubMed  Google Scholar 

  20. Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol, 2011,164(2): 213–223

    Article  PubMed  PubMed Central  Google Scholar 

  21. Asahi M, Asahi K, Wang X, et al. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab, 2000,20(3):452–457

    Article  CAS  PubMed  Google Scholar 

  22. Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke, 1986,17(3):472–476

    Article  CAS  PubMed  Google Scholar 

  23. Kahles T, Luedike P, Endres M, et al. Nadph oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke, 2007,38(11):3000–3006

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, He F, Yang J, et al. Protective effects of epigallocatechin-3-gallate on intestinal ischemia reperfusion injury through enhanced activation of PI3K/Akt pathway in rats. J Huazhong Univ Sci Technolog Med Sci, 2015,35(3):378–38325

    Article  CAS  PubMed  Google Scholar 

  25. Infanger DW, Sharma RV, Davisson RL. Nadph oxidases of the brain: Distribution, regulation, and function. Antioxid Redox Signal, 2006,8(9-10):1583–1596

    Article  CAS  PubMed  Google Scholar 

  26. Carbone F, Teixeira PC, Braunersreuther V, et al. Pathophysiology and treatments of oxidative injury in ischemic stroke: Focus on the phagocytic NADPH oxidase 2. Antioxid Redox Signal, 2015,23(5):460–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarty MF. NADPH oxidase activity in cerebral arterioles is a key mediator of cerebral small vessel disease-Implications for prevention. Healthcare (Basel), 2015,3(2):233–251

    Article  Google Scholar 

  28. Takac I, Schroder K, Zhang L, et al. The e-loop is involved in hydrogen peroxide formation by the nadph oxidase nox4. J Biol Chem, 2011,286(15):13304–13313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miller AA, Drummond GR, Schmidt HH, et al. Nadph oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res, 2005,97(10): 1055–1062

    Article  CAS  PubMed  Google Scholar 

  30. Aldieri E, Riganti C, Polimeni M, et al. Classical inhibitors of noxnad(p)h oxidases are not specific. Curr Drug Metab, 2008,9(8):686–696

    Article  CAS  PubMed  Google Scholar 

  31. Gray SP, Jha JC, Kennedy K, et al. Combined NOX1/4 inhibition withGKT137831 in mice provides dose-dependent reno-and atheroprotection even in established microand macrovascular disease. Diabetologia, 2017,60(5):927–937

    Article  CAS  PubMed  Google Scholar 

  32. Steinkamp-Fenske K, Bollinger L, Voller N, et al. Ursolic acid from the chinese herb danshen (salvia miltiorrhiza l.) upregulates enos and downregulates nox4 expression in human endothelial cells. Atherosclerosis, 2007,195(1): e104–111

    Article  CAS  PubMed  Google Scholar 

  33. Vallet P, Charnay Y, Steger K, et al. Neuronal expression of the nadph oxidase nox4, and its regulation in mouse experimental brain ischemia. Neuroscience, 2005,132(2): 233–238

    Article  CAS  PubMed  Google Scholar 

  34. Ma MW, Wang J, Zhang Q, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener, 2017,12(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alakurtti S, Makela T, Koskimies S, et al. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci, 2006,29(1):1–13

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu  (徐 卉).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Zhang, Cc., Zhang, Xm. et al. Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice. CURR MED SCI 37, 744–749 (2017). https://doi.org/10.1007/s11596-017-1798-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1798-5

Key words

Navigation