Skip to main content

Advertisement

Log in

Effects of Co2O3 Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials. SiC composite ceramics for solar absorber and storage integration were fabricated using SiC, black corundum and kaolin as the raw materials, Co2O3 as the additive via pressureless graphite-buried sintering method in this study. Influences of Co2O3 on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied. The results indicate that sample D2 (5wt% Co2O3) sintered at 1 480 °C exhibits optimal performances for 119.91 MPa bending strength, 93% solar absorption, 981.5 kJ/kg (25–800 °C) thermal storage density. The weight gain ratio is 12.58 mg/cm2 after 100 h oxidation at 1 000 °C. The Co2O3 can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering. The liquid with low viscosity not only promotes the elimination of pores to achieve densification, but also increases bending strength, solar absorption, thermal storage density and oxidation resistance. A dense SiO2 layer was formed on the surface of SiC after 100 h oxidation at 1 000 °C, which protects the sample from further oxidation. However, excessive Co2O3 will make the microstructure loose, which is disadvantageous to the performances of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rashidi S, Liu Y, Khoosh-Ahang A, et al. Entropy Generation Analysis of Different Solar Thermal Systems[J]. Environ. Sci. Pollut. Res., 2020, 27(17): 20 699–20 724

    Article  Google Scholar 

  2. Yang YL, Ye L. The Analysis of How to Improve of Thermal Efficiency for Solar Tower Plant[J]. Equipment Manuf. Technol., 2013, 3: 187–194

    Google Scholar 

  3. Xu ES, Hu ZL, Zhai RR, et al. Simulation and Exergy Analysis of Solar Thermal Tower Plants[J]. Proc. Chinese Soc. Electric. Eng., 2014, 34 (11): 1 799–1 806

    Google Scholar 

  4. Romero M, Buck R, Pacheco JE. An Update on Solar Central Receiver Systems, Projects, and Technologies[J]. J. Sol. Energy Eng., 2002, 124(2): 98–108

    Article  Google Scholar 

  5. Benoit H, Spreafico L, Gauthier D, et al. Review of Heat Transfer Fluids in Tube-receivers Used in Concentrating Solar Thermal Systems: Properties and Heat Transfer Coefficients[J]. Renew. Sust. Energy Rev., 2016, 55: 298–315

    Article  CAS  Google Scholar 

  6. Lao XB, Xu XH, Wu JF, et al. Effect of Silicon on Properties of Al2O3-SiCw Composite Ceramics in-situ Synthesized by Aluminium-assisted Carbothermal Reduction of Coal Series Kaolin for Solar Thermal Storage[J]. J. Alloy. Compd., 2017, 692: 825–832

    Article  CAS  Google Scholar 

  7. Khare S, Dell’Amico M, Knight C, et al. Selection of Materials for High Temperature Sensible Energy Storage[J]. Sol. Energy Mater. Sol. Cells, 2013, 115: 114–122

    Article  CAS  Google Scholar 

  8. Miro L, Oro E, Boer D, et al. Embodied Energy in Thermal Energy Storage (TES) Systems for High Temperature Applications[J]. Appl. Energy, 2015, 137: 793–799

    Article  Google Scholar 

  9. Medrano M, Gil A, Martorell I, et al. State of the Art on High-temperature Thermal Energy Storage for Power Generation. Part 2-Case Studies[J]. Renew. Sust. Energy Rev., 2010, 14(1): 56–72

    Article  Google Scholar 

  10. Wu JF, Liu M, Xu XH, et al. Research Progress of Absorber Materials in Tower Type Solar Thermal Power Plant[J]. Mater. Rep., 2013, 27(13): 57–61

    CAS  Google Scholar 

  11. Lu GH, Lu DD, Zhou HW, et al. Effect of Sintering Aid on Properties of Silicon Carbide Ceramics by Pressureless Liquid Phase Sintering[J]. J. Yili Normal Univ. (Nat. Sci. Edition), 2019, 13(02): 25–32

    Google Scholar 

  12. Li CR, Xie ZP, Kang GX, et al. Reserch and Application Progress of SiC Ceramics: A Review[J]. Bull. Chinese Ceram. Soc., 2020, 39(05): 1 353–1 370

    Google Scholar 

  13. Li CR, Xie ZP, Zhao L. Research and Application of Sintering Technologies for SiC Ceramic Materials: A Review[J]. J. Ceram., 2020, 41(02): 137–149

    CAS  Google Scholar 

  14. Fu ZD, Zhao J, Dai YJ, et al. Sintering Aids for Silicon Carbide Ceramics: Action Mechanisms and Research Progress[J]. J. Mater. Rep., 2021,35(01): 1 077–1 081

    Google Scholar 

  15. Xu XH, Rao ZG, Wu JF, et al. In-situ Synthesis and Thermal Shock Resistance of Cordierite/Silicon Carbide Composites Used for Solar Absorber Coating[J]. Sol. Energy Mater. Sol. Cells, 2014, 130: 257–263

    Article  CAS  Google Scholar 

  16. Xu XH, Rao ZG, Wu JF, et al. In-Situ Synthesized Mullite Bonded Silicon Carbide Ceramics Used in Solar Heat Receiver[J]. J. Chinese Ceram. Soc., 2014, 42(07): 869–877

    CAS  Google Scholar 

  17. Sun XY, Chen H, Wang SQ, et al. Preparation and Thermal Conductivity of SiC-diamond Ceramics[J]. China’s Refractories, 2021, 55(02): 131–134

    Google Scholar 

  18. Belessiotis GV, Papadokostaki KG, Favvas EP, et al. Preparation and Investigation of Distinct and Shape Stable Paraffin/SiO2 Composite PCM Nanospheres[J]. Energy Convers. Manage., 2018, 168(1): 382–394

    Article  CAS  Google Scholar 

  19. Ranjbar SG, Roudini G, Barahuie F. Fabrication and Characterization of Phase Change Material-SiO2 Nanocomposite for Thermal Energy Storage in Buildings[J]. J. Energy Storage, 2020, 27: 1–7

    Article  Google Scholar 

  20. Chen YF, Wang MC, Hon MH. Phase Transformation and Growth of Mullite in Kaolin Ceramics[J]. J. Eur. Ceram. Soc., 2004, 24 (8): 2 389–2 397

    Article  CAS  Google Scholar 

  21. Wu JF, Zhou Y, Liu Y, et al. Synthesis of Mullite from Shanxi Coal-series Kaolin by Molten Salt Method[J]. J. Wuhan. Univ. Technol. -Mater. Sci. Ed., 2016, 38(1): 24–29

    Article  Google Scholar 

  22. Xu XH, Lao XB, Wu JF, et al. Microstructural Evolution, Phase Transformation, and Variations in Physical Properties of Coal Series Kaolin Powder Compact During Firing[J]. Appl. Clay Sci., 2015, 115: 76–86

    Article  CAS  Google Scholar 

  23. Carty WM, Senapati U. Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior[J]. J. Am. Ceram. Soc., 1998, 81(1): 3–20

    Article  CAS  Google Scholar 

  24. Jin H, Zhang W, Deng XY, et al. Effect of Different Aluminum Sources on the Preparation and Properties of SiC/Cordierite Composite Porous Ceramics[J]. Bull. Chinese Ceram. Soc. 2018, 37(02): 403–410

    Google Scholar 

  25. Bai CY, Deng XY, Li JB, et al. Fabrication and Properties of Cordierite-mullite Bonded Porous SiC Ceramics[J]. Ceram. Int., 2014, 40(4): 6 335–6 231

    Article  Google Scholar 

  26. Xu XH, Xu XY, Wu JF, et al. Effect of Dolomite and Spodumene on the Performances of Andalusite Composite Ceramics for Solar Heat Transmission Pipeline[J]. Ceram. Int., 2015, 41(9): 11 861–11 869

    Article  CAS  Google Scholar 

  27. Xu XH, Xu T, Wu JF, et al. Research on Andalusite Porous Ceramics Used for High Temperature Dust Removal[J]. J. Wuhan. Univ. Technol.-Mater. Sci. Ed., 2015, 37(1): 21–26

    CAS  Google Scholar 

  28. Xu XH, Rao ZG, Wu JF, et al. In-situ Synthesis and Thermal Shock Resistance of Cordierite/Silicon Carbide Composites Used for Solar Absorber Coating[J]. Sol. Energy Mater. Sol. Cells, 2014, 130: 257–263

    Article  CAS  Google Scholar 

  29. Wu JF, Zhang YX, Xu XH, et al. A novel in-situ β-Sialon/Si3N4 Ceramic Used for Solar Heat Absorber[J]. Ceram. Int., 2015, 41(10): 14 440–14 446

    Article  CAS  Google Scholar 

  30. Wu JF, Liu M, Xu XH, et al. Research Progress of Absorber Materials in Tower Type Solar Thermal Power Plant[J]. Mater. Rep., 2013, 27 (13): 57–61

    CAS  Google Scholar 

  31. Pappacena KE, Faber KT, Wang H, et al. Thermal Conductivity of Porous Silicon Carbide Derived from Wood Precursors[J]. J. Am. Ceram. Soc., 2007, 90(9): 2 855–2 862

    Article  CAS  Google Scholar 

  32. Li JR, Lu WZ. Effects of AlN and Rare Earth Fluorides on the Thermal conductivity of SiC Ceramics with Impedance Spectroscopy Analysis[J]. J. Phys. Conf. Ser., 2021, 2011: 1–7

    Article  Google Scholar 

  33. Xu XH, Tian JZ, Wu JF, et al. Fe2O3 on In-situ Synthesized SiCw/SiC Composite Ceramics for Solar Thermal Energy Storage[J]. J. Inorg. Mater., 2019, 34(10): 1 103–1 108

    Google Scholar 

  34. Zhang C, Yao XM, Li YS, et al. Effect of AlN Addition on the Thermal Conductivity of Pressureless Sintered SiC Ceramics[J]. Ceram. Int., 2015, 41(7): 9 107–9 114

    Article  CAS  Google Scholar 

  35. Li YS, Yin J, Wu HB, et al. High Thermal Conductivity in Pressureless Densified SiC Ceramics with Ultra-low Contents of Additives Derived from Novel Boron-carbon Sources[J]. J. Eur. Ceram. Soc., 2014, 34(10): 2 591–2 595

    Article  CAS  Google Scholar 

  36. Wu JF, Fang BZ, Xu XH, et al. Preparation of Cordierite-Mullite Heat Storage Ceramics for Solar Thermal Power Generation[J]. Acta Energiae Solaris Sinica, 2015, 36(06): 1 312–1 317

    CAS  Google Scholar 

  37. Liu JW, Zhu CH, Liang WZ, et al. Experimental Investigation on Micro-scale Phase Change Material Based on Sodium Acetate Trihydrate for Thermal Storage[J]. Sol. Energy, 2019, 193: 413–421

    Article  CAS  Google Scholar 

  38. Wu JF, Fang BZ, Xu XH, et al. Preparation and Characterization of Alumina-Silicon Carbide-Zirconia Thermal Storage Ceramics for Solar Thermal Power Generation[J]. J. Chinese Ceram. Soc., 2013, 41(8): 1 063–1 069

    CAS  Google Scholar 

  39. Wu QD, Tong YF. Study on the Oxidation Mechanism and the Resistance to Oxidation of SiC Materials[J]. Ceram. Sci. Art, 2002, 01: 7–13

    Google Scholar 

  40. Rodriguez-Rojas F, Ortiz AL, Guiberteau F, et al. Oxidation Behaviour of Pressureless Liquid-phase-sintered α-SiC with Additions of 5Al2O3+3RE2O3 (RE=La, Nd, Y, Er, Tm, or Yb)[J]. J. Eur. Ceram. Soc., 2010, 30(15): 3 209–3 217

    Article  CAS  Google Scholar 

  41. Zhang PF, Zhang YL, Chen GH, et al. High-temperature Oxidation Behavior of CVD-SiC Ceramic Coating in Wet Oxygen and Structural Evolution of Oxidation Product: Experiment and First-principle Calculations[J]. Appl. Surf. Sci., 2021, 556: 1–11

    Article  Google Scholar 

  42. Xue XX, Xie P, Zhai YC, et al. Oxidation Resistance of TiN/O′-Sialon In-situ Composite Material[J]. Bull. Chinese Ceram. Soc., 2000, 02: 29–30

    Google Scholar 

  43. Tang HL, Zeng XR, Xiong XB, et al. Research of Oxidation Resistance of Short Carbon Fiber Reinforced SiC Composite by Hot-pressing[J]. J. Inorg. Mater., 2009, 24(2): 305–309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhou  (周炀) or Jianfeng Wu  (吴建锋).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Key R&D Program of China (No. 2018YFB1501002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wu, J., Tian, K. et al. Effects of Co2O3 Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1269–1277 (2023). https://doi.org/10.1007/s11595-023-2819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2819-9

Key words

Navigation