Skip to main content
Log in

Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The early-age hydration characteristics of composite binder containing graphite powder (GP) with two different finenesses were investigated by determining the hydration heat, thermo gravimetric, morphology of hardened paste as well as the compressive strength of mortar. The experimental results show that: replacing 2%–6% of cement with graphite powder significantly improves the piezoresistive effect of early age mortar, can be used to monitor accidental loads caused by dropped objects, collisions, or other accident events, and thus avoids initial damage. Some GP provides additional nucleation sites that lead to a fast formation of hydration products (nucleation-site effect). However, due to the almost hydrophobic water contact angle, most of the GP causes a large number of micro-cracks in the hydrated paste (gap effect). Because of the lamellar shape and high surface energy, GP is easily balled and can not be uniformly distributed in the composite, resulting in clumping together and wrapping some of the cement particles (barrier effect). Due to nucleation-site effect, when the dosages of coarse and fine GP reached 2% and 4%, 1 d strength were increased by 9.1% and 9.6%, respectively. At 3 days, as the interior damage caused by the gap effect gradually increased, and the retarding effect on cement hydration caused by barrier effect was enhanced. GP has an obvious negative effect on compressive strength. However, micro-cracks caused by fine GP are less, so its negative effect on 3 d compressive strength is lower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi MX, Wang Q, Zhang ZK. Comparison of the Properties between High-volume Fly Ash Concrete and High-volume Steel Slag Concrete under Temperature Matching Curing Condition[J]. Construction & Building Materials, 2015(98): 649–655

  2. McCarter WJ, Forde MC, Whittington HW. Resistivity Characteristics of Concrete[J]. Proceedings of the Institution of Civil Engineers, 1981, 71(1): 107–117

    Article  Google Scholar 

  3. WHITING DA, NAGI MA. Electrical Resistivity of Concrete — A Literature Review[R]. Illinois: Portland Cement Association, 2003

    Google Scholar 

  4. Monfore GE. The Electrical Resistivity of Concrete[J]. Journal of the PCA Research & Development Laboratories, 1968, 10(2): 35–48

    CAS  Google Scholar 

  5. Han BG, Ou JP, Zhang LQ. Smart and Multifunctional Concrete toward Sustainable Infrastructures[M]. Singapore: Springer Nature Singapore PTE Ltd., 2017: 247

    Book  Google Scholar 

  6. Wu JM, Liu JG, Yang F. Three-phase Composite Conductive Concrete for Pavement Deicing[J]. Construction & Building Materials, 2015(75): 129–135

  7. Tuan CY. Roca Spur Bridge: The Implementation of an Innovative Deicing Technology[J]. Journal of Cold Regions Engineering, 2008, 22(1): 1–15

    Article  Google Scholar 

  8. Dai YW, Sun MQ, Liu CG, et al. Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-based Composites[J]. Cement & Concrete Composites, 2010, 32(7): 508–513

    Article  CAS  Google Scholar 

  9. Muthusamy S, Chung DDL. Carbon-fiber Cement-based Materials for Electromagnetic Shielding[J]. ACI Materials Journal, 2010, 107(6): 602–610

    CAS  Google Scholar 

  10. Wang JR, Ding YM. The Application of Conductive Concrete in the Grounding Network Reconstruction of Bai-Sha Hydropower Station[J]. Electrical Equipment, 2008, 9(4): 67–69

    Google Scholar 

  11. Zhang J, Xu L, Zhao Q. Investigation of Carbon Fillers Modified Electrically Conductive Concrete as Grounding Electrodes for Transmission Towers: Computational Model and Case Study[J]. Construction & Building Materials, 2017(145): 347–353

  12. Shi ZQ, Chung DDL. Carbon Fiber-reinforced Concrete for Traffic Monitoring and Weighing in Motion[J]. Cement & Concrete Research, 1999, 29(3): 435–439

    Article  CAS  Google Scholar 

  13. Zhang XY, Lü Y, Chen J, et al. Field Sensing Characteristic Research of Carbon Fiber Smart Material[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(5): 914–917

    Article  CAS  Google Scholar 

  14. Howser RN, Dhonde HB, Mo YL. Self-sensing of Carbon Nano-fiber Concrete Columns Subjected to Reversed Cyclic Loading[J]. Smart Materials & Structures, 2011, 20(8): 085031

    Article  Google Scholar 

  15. Fu XL, Chung DDL. Radio-wave-reflecting Concrete for Lateral Guidance in Automatic Highways[J]. Cement & Concrete Research, 1998, 28(6): 795–801

    Article  CAS  Google Scholar 

  16. Yehia S, Host J. Conductive Concrete for Cathodic Protection of Bridge Decks[J]. ACI Materials Journal, 2010, 107(6): 577–585

    CAS  Google Scholar 

  17. Xie P, Gu P, Beaudoin JJ. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibers[J]. Journal of Materials Science, 1996, 31(15): 4093–4097

    Article  CAS  Google Scholar 

  18. Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004, 26(4): 291–297

    Article  Google Scholar 

  19. Banthia N, Djeridance S, Pigeon M. Electrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]. Cement & Concrete Research, 1992, 22(5): 804–814

    Article  CAS  Google Scholar 

  20. Yehia S, Tuan CY, Ferdon D, et al. Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties[J]. ACI Materials Journal, 2000, 97(2): 172–181

    CAS  Google Scholar 

  21. Chung DDL. Self-monitoring Structural Materials[J]. Materials Science & Engineering R: Reports, 1998, 22(2): 57–78

    Article  Google Scholar 

  22. Chiarello M, Zinno R. Electrical Conductivity of Self-monitoring CFRC[J]. Cement & Concrete Composite, 2005, 27(4): 463–469

    Article  CAS  Google Scholar 

  23. Shui ZH, Li C, Liao WD. Resistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005, 20(4): 116–119

    Article  CAS  Google Scholar 

  24. Han BG, Chen W, Ou JP. Piezo Resistivity of Cement-based Materials with Acetylene Carbon Black[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 39–44

    CAS  Google Scholar 

  25. Wang XY, Sun MQ, Hou ZF, et al. Study on Electrical and Electro Thermal Properties of Nano Carbon Black Cement Mortar[J]. Journal of Functional Materials, 2006, 37(11): 1841–1843+1847

    CAS  Google Scholar 

  26. Yang YS, Dong FQ. On Electro Thermal Concrete of Doping Graphite Electricity-conductive Elementary Materials[J]. Journal of Functional Materials, 2008, 39(3): 385–387

    CAS  Google Scholar 

  27. Wen S, Chung DDL. Partial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement-matrix Composites[J]. Carbon, 2007, 45(3): 505–513

    Article  CAS  Google Scholar 

  28. Gan WM, Huang X, Chen PF. Piezoresistivity of Cement Based Material with Small Amount of Graphite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 556–559+578

    Google Scholar 

  29. Rahhal V, Bonavetti V, Trusilewicz L, et al. Role of the Filler on Portland Cement Hydration at Early Ages[J]. Construction & Building Materials, 2012(27): 82–90

  30. Wang YS, Lü LN, He YJ, et al. Effect of Calcium Silicate Hydrate Seeds on Hydration and Mechanical Properties of Cement[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(1): 103–110

    Article  CAS  Google Scholar 

  31. Wang Q, Yang J, Chen HH. Long-term Properties of Concrete Containing Limestone Powder[J]. Materials & Structures, 2017, 50(3): 168

    Article  Google Scholar 

  32. Cui SP, Liu YX, Lan MZ, et al. Preparation and Properties of Graphite-cement Based Composites[J]. Journal of the Chinese Ceramic Society, 2007, 35(1): 91–95

    CAS  Google Scholar 

  33. Chen M, Gao P, Geng F, et al. Mechanical and Smart Properties of Carbon Fiber and Graphite Conductive Concrete for Internal Damage Monitoring of Structure[J]. Construction & Building Materials, 2017(142): 320–327

  34. Cao HY, Yao W, Qin JJ. Seebeck Effect in Graphite-carbon Fiber Cement Based Composite[J]. Advanced Materials Research, 2011(177): 566–569

  35. Sassani A, Ceylan H, Kim S, et al. Influence of Mix Design Variables on Engineering Properties of Carbon Fiber-modified Electrically Conductive Concrete[J]. Construction & Building Materials, 2017(152): 168–181

  36. Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement & Concrete Composites, 2004(26): 291–297

  37. Han BG, Ding SQ, Yu X. Intrinsic Self-sensing Concrete and Structures: A Review[J]. Measurement, 2015(59): 110–128

  38. Zhang QQ, Wei Y. Quantitative Analysis on Reaction Degree of Slag-cement Composite System Based on Back-scattered-electron Image[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 563–569

    CAS  Google Scholar 

  39. Fowkes FM, Harkins WD. The State of Monolayers Adsorbed at the Interface Solid-Aqueous Solution[J]. Journal of the American Chemical Society, 1940, 62(12): 3 377–3 386

    Article  CAS  Google Scholar 

  40. Tadros ME, Hu P, Adamson AW. Adsorption and Contact Angle Studies: I. Water on Smooth Carbon, Linear Polyethylene, and Stearic Acid-coated Copper[J]. Journal of Colloid & Interface Science, 1974, 49(2): 184–195

    Article  CAS  Google Scholar 

  41. Shin YJ, Wang Y, Huang H, et al. Surface Energy Engineering of Grapheme[J]. Langmuir the ACS Journal of Surfaces and Colloids, 2010, 26(6): 3798–802

    Article  CAS  Google Scholar 

  42. Kogan MJ, Dalcol I, Gorostiza P, et al. Supramolecular Properties of the Proline-rich γ-Zein N-Terminal domain[J]. Biophysical Journal, 2002, 83(2): 1 194–1 204

    Article  CAS  Google Scholar 

  43. Raj R, Maroo SC, Wang EN. Wettability of Graphene[J]. Nano Letters, 2013, 13(4): 1 509–1 515

    Article  CAS  Google Scholar 

  44. Zheng Y, Zaoui A. Wetting and Nanodroplet Contact Angle of the Clay 2:1 Surface: The Case of Na-montmorillonite (001)[J]. Applied Surface Science, 2016, 396: 717–722

    Article  Google Scholar 

  45. Wang SR, Zhang Y, Abidi N, Cabrales L. Wettability and Surface Free Energy of Graphene Films[J]. Langmuir, 2009, 25(18): 11 078–11 081

    Article  CAS  Google Scholar 

  46. Jia XW, Zhang X, Ma D, et al. Conductive Properties and Influencing Factors of Electrically Conductive Concrete: A Review[J]. Materials Review, 2017(21): 93–100

  47. Dweck J, Buchler PM, Acv C, et al. Hydration of a Portland Cement Blended with Calcium Carbonate[J]. Thermochimica Acta, 2000, 346(1): 105–113

    Article  CAS  Google Scholar 

  48. Savvatimskii AI, Aleksandr I. Melting Point of Graphite and Liquid Carbon[J]. Physics-Uspekhi, 2003, 46(12): 1 295–1 303

    Article  CAS  Google Scholar 

  49. Wang K, Shah SP, Mishulovich A. Effects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-fly Ash Binders[J]. Cement & Concrete Research, 2004, 32(2): 299–309

    Article  CAS  Google Scholar 

  50. Vassileva CG, Vassilev SV. Behaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites[J]. Fuel Processing Technology, 2005, 86(12–13): 1 297–1 233

    Article  CAS  Google Scholar 

  51. Song H, Jeong Y, Bae S, et al. A Study of Thermal Decomposition of Phases in Cementitious Systems Using HT-XRD and TG[J]. Construction & Building Materials, 2018(169): 648–661

  52. Wang Q, Wang DQ, Chen HH. The Role of Fly Ash Microsphere in the Microstructure and Macroscopic Properties of High-strength Concrete[J]. Cement & Concrete Composite, 2017(83): 125–137

  53. Soroka J. Portland Cement Paste and Concrete[M]. London: Macmillan Press Ltd, 1979: 35

    Book  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (Nos. 52208413 and 51908022) and the R&D Program of Beijing Municipal Education Commission (Nos. KM202210016011 and KM202110016013)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomin Song  (宋少民).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Song, S., Meng, X. et al. Early-age Hydration Characteristics of Composite Binder Containing Graphite Powder. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1252–1261 (2022). https://doi.org/10.1007/s11595-022-2658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2658-0

Key words

Navigation