Skip to main content
Log in

Effects of Sm Doping to Improve the Thermoelectric Properties of ZnO Ceramics

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A series of Sm doped ZnO based thermoelectric materials were prepared by mechanical alloying and spark plasma sintering. The effects of Sm doping on ZnO based thermoelectric materials were systematically studied by means of electrical and thermal properties tests combined with first principles calculations of energy band, density of states and elastic constants. The experimental results show that the substitution of Sm at Zn site could cause the valence band and conduction band moving down, and the 4f orbitals of Sm could contribute to the increase of the density of states near the Fermi level, corresponding to the increase of carrier concentration and electrical conductivity. The substitution of Sm at Zn site could cause the decrease of effective mass and Seebeck coefficient. The substitution of Sm at Zn site could lead to the decrease of Young’s modulus and lattice thermal conductivity, which contribute to the decrease of thermal conductivity. Finally, the highest dimensionless thermoelectric figure of merit (ZT) value has been increased to 0.346, which is 3.48 times as pristine ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Snyder GJ, Ursell TS. Thermoelectric Efficiency and Compatibility[J]. Phys. Rev. Lett., 2003, 91(14): 148 301

    Article  Google Scholar 

  2. Li JF, Liu WS, Zhao LD, et al. High-performance Nanostructured Thermoelectric Materials[J]. NPG Asia Mater., 2010, 2(4): 152–158

    Article  Google Scholar 

  3. Jiang HY, Long HS, Zhang LM. Effects of Solid-state Reaction Synthesis Processing Parameters on Thermoelectric Properties of Mg2Si[J]. J. Wuhan Univ. Technol., 2004, 19(002): 55–56

    Article  CAS  Google Scholar 

  4. Alam H, Ramakrishna S. A Review on the Enhancement of Figure of Merit from Bulk to Nano-thermoelectric Materials[J]. Nano Energy, 2013, 2(2): 190–212

    Article  CAS  Google Scholar 

  5. Qi X, Zeng L, Hui W, et al. Thermoelectric Properties of Ca3Co4O9 Ceramics[J]. Wuhan Univ. Technol., 2010, 25(2): 287–290

    Article  CAS  Google Scholar 

  6. Feng Y, Jiang X, Ghafari E, et al. Metal Oxides for Thermoelectric Power Generation and Beyond[J]. Adv. Compos. Hybri. Mater., 2018, 1(1): 114–126

    Article  CAS  Google Scholar 

  7. Tang XF, Song B, Zhang QJ. Effect of Y(Yttrium) Filling Fraction on Thermoelectric Properties of p-type YyFexCo4−xSb12[J]. Wuhan Univ. Technol., 2006, 21(4): 64–67

    Article  CAS  Google Scholar 

  8. Ruan X, Xiao W. Preparation and Thermoelectric Properties of SiC2/beta-Zn4Sb3 Nanocomposite Materials[J]. Wuhan Univ. Technol., 2009, 24(5): 694–697

    Article  CAS  Google Scholar 

  9. Ohta H, Seo WS, Koumoto K. Thermoelectric Properties of Homologous Compounds in the ZnO-In2O3 System[J]. J. Am. Ceram. Soc., 1996, 79(8): 2 193–2 196

    Article  CAS  Google Scholar 

  10. Cai KF, Müller E, Drašar C, et al. Preparation and Thermoelectric Properties of Al-doped ZnO Ceramics[J]. Mater. Sci. Eng. B, 2003, 104(1–2): 45–48

    Article  Google Scholar 

  11. Tsubota T, Ohtaki M, Eguchi K, et al. Thermoelectric Properties of Al-doped ZnO as a Promising Oxidematerial for High-temperature Thermoelectric Conversion[J]. J. Mater. Chem., 1997, 7(1): 85–90

    Article  CAS  Google Scholar 

  12. Colder H, Guilmeau E, Harnois C, et al. Preparation of Ni-doped ZnO Ceramics for Thermoelectric Applications[J]. J. Eur. Ceram. Soc., 2011, 31(15): 2 957–2 963

    Article  CAS  Google Scholar 

  13. Bérardan D, Byl C, Dragoe N. Influence of the Preparation Conditions on the Thermoelectric Properties of Al-doped ZnO[J]. J. Am. Ceram. Soc., 2010, 93(8): 2 352–2 358

    Article  Google Scholar 

  14. Nam WH, Lim YS, Choi SM, et al. High-temperature Charge Transport and Thermoelectric Properties of a Degenerately Al-doped ZnO Nanocomposite[J]. J. Mater. Chem., 2012, 22(29): 14 633–14 638

    Article  CAS  Google Scholar 

  15. Park K, Seong JK, Nahm S. Improvement of Thermoelectric Properties with the Addition of Sb to ZnO[J]. J. Alloy. Compd., 2008, 455(1–2): 331–335

    Article  CAS  Google Scholar 

  16. Liang X. Thermoelectric Transport Properties of Fe-enriched ZnO with High-temperature Nanostructure Refinement[J]. ACS appl. Mater. Interface, 2015, 7(15): 7 927–7 937

    Article  CAS  Google Scholar 

  17. Feng B, Li G, Hou Y, et al. Enhanced Thermoelectric Properties of Sb-doped BiCuSeO due to Decreased Band Gap[J]. J. Alloy. Compd., 2017, 712: 386–393

    Article  CAS  Google Scholar 

  18. Feng B, Jiang X, Pan Z, et al. Preparation, Structure, and Enhanced Thermoelectric Properties of Sm-doped BiCuSeO Oxyselenide[J]. Mater. Des., 2020, 185: 108 263

    Article  CAS  Google Scholar 

  19. Martin J, Wang L, Chen L, et al. Enhanced Seebeck Coefficient Through Energy-barrier Scattering in PbTe Nanocomposites[J]. Phys. Rev. B, 2009, 79(11): 115 311

    Article  Google Scholar 

  20. Pan L, Bérardan D, Zhao L, et al. Influence of Pb Doping on the Electrical Transport Properties of BiCuSeO[J]. Appl. Phys. Lett., 2013, 102(2): 023 902

    Article  Google Scholar 

  21. Feng B, Li G, Hou Y, et al. Enhanced Thermoelectric Properties of Sb-doped BiCuSeO due to Decreased Band Gap[J]. J. Alloy. Compd., 2017, 712: 386–393

    Article  CAS  Google Scholar 

  22. Feng B, Li G, Pan Z, et al. Enhanced Thermoelectric Performances in BiCuSeO Oxyselenides via Er and 3D Modulation Doping[J]. Ceram. Int., 2019, 45(4): 4 493–4 498

    Article  CAS  Google Scholar 

  23. Pei YL, He J, Li JF, et al. High Thermoelectric Performance of Oxy-selenides: Intrinsically Low Thermal Conductivity of Ca-doped BiCuSeO[J]. NPG Asia Mater., 2013, 5(5): e47

    Article  CAS  Google Scholar 

  24. Li J, Sui J, Pei Y, et al. A high Thermoelectric Figure of Merit ZT > 1 in Ba Heavily Doped BiCuSeO Oxyselenides[J]. Energ. Environ. Sci., 2012, 5(9): 8 543–8 547

    Article  CAS  Google Scholar 

  25. Zhao LD, He J, Berardan D, et al. BiCuSeO Oxyselenides: New Promising Thermoelectric Materials[J]. Energ. Environ. Sci., 2014, 7(9): 2 900–2 924

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Natural Science Foundation of Hubei Province (2021CFB009), and the Guiding Project of Hubei Province in 2022 and the School Youth Fund of Wuhan Donghu University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Feng  (冯波).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Mao, W. Effects of Sm Doping to Improve the Thermoelectric Properties of ZnO Ceramics. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1166–1171 (2022). https://doi.org/10.1007/s11595-022-2648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2648-2

Key words

Navigation