Skip to main content
Log in

Self-assemble Mechanism of Nickel Nanobelts Prepared by Sol-precipitation and Thermal Decomposition Route

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Using the idea of material design and the design of reaction system and conditions, quasi-one-dimensional nano-materials with ribbon-like structure were successfully prepared. Nickel tartrate nanobelts were prepared by a sol-precipitation route, using nickel chloride hexahydrate and tartaric acid as raw materials, and using ammonium hydroxide as pH value modifier. Nickel nanobelts with smooth surface were prepared by a thermal-decomposition route at about 355 °C for about 30 minutes, in CO2 atmosphere, using nickel tartrate nanobelts as precursor. The analyses of atomic absorption spectrometry (AAS), organic elemental analyzer (OEA), infrared spectroscopy (IR) and ultraviolet-visible spectroscopy (UV-Vis) indicate that the products as-prepared is nickel tartrate, which has octahedral configuration of co-ordination of nickel atoms. The images of scanning electron microscopy (SEM) indicate that the morphology of nickel tartrate as-prepared is an obvious belt structure with clear and smooth surface. The images of SEM also indicate that the nickel nanobelts have clear and smooth surface. The nickel nanobelts are about tens of micrometers in length, tens of nanometers in thickness, and 100–200 nanometers in width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vojtěch D, Michalcová A, Klementová M, et al. Nanocrystalline Nickel as a Material with High Hydrogen Storage Capacity[J]. Mater. Lett., 2009, 63: 1074–1076

    Article  Google Scholar 

  2. Zhang YF, Park M, Kim HY, et al. Moderated Surface Defects of Ni Particles Encapsulated with NiO Nanofibers as Supercapacitor with High Capacitance and Energy Density[J]. J. Colloid. Interface. Sci., 2017, 500: 155–163

    Article  CAS  Google Scholar 

  3. You B, Liu X, Liu X, et al. Efficient H2 Evolution Coupled with Oxidative Refining of Alcohols via a Hierarchically Porous Nickel Bifunctional Electrocatalyst[J]. ACS Catal., 2017, 7: 4564–4570

    Article  CAS  Google Scholar 

  4. Wang WH, Bai J, Wang JZ, et al. Self-assembly 3D Needle-like Nickel Nanostructure Growth on Carbon Fibers by Regulating Prepare Conditions and Exploited as Bifunctional Material[J]. Appl. Surf. Sci., 2019, 465: 82–92

    Article  CAS  Google Scholar 

  5. Lin Z, Fan S, Liu M, et al. Excellent Anti-arc Erosion Performance and Corresponding Mechanisms of a Nickel-belt-reinforced Silver-based Electrical Contact Material[J]. J. Alloys. Compd., 2019, 788: 163–171

    Article  CAS  Google Scholar 

  6. Wei W, Chen W, Ding L, et al. Construction of Hierarchical Three-dimensional Interspersed Flower-like Nickel Hydroxide for Asymmetric Supercapacitors[J]. Nano Res., 2017, 10: 3726–3742

    Article  CAS  Google Scholar 

  7. Li D, Guo K, Wang F, et al. Enhanced Microwave Absorption Properties in C Band of Ni/C Porous Nanofibers Prepared by Electrospinning[J]. J. Alloys. Compd., 2019, 800: 294–304

    Article  CAS  Google Scholar 

  8. Amaral Junior MA, Marcuzzo JS, Pinheiro BS, et al. Study of Reflection Process for Nickel Coated Activated Carbon Fiber Felt Applied with Electromagnetic Interference Shielding[J]. J. mater. Res. technol., 2019, 8(5): 4040–4047

    Article  Google Scholar 

  9. Kumar A, Ashok A, Bhosale RR, et al. In situ DRIFTS Studies on Cu, Ni and CuNi Catalysts for Ethanol Decomposition Reaction[J]. Catal. Lett., 2016, 146: 778–787

    Article  CAS  Google Scholar 

  10. Chi Y, Li T, Chong JY, et al. Graphene-protected Nickel Hollow Fibre Membrane and Its Application in the Production of High-Performance Catalysts[J]. J. Memb. Sci., 2020, 597: 117 617(1–6)

    Article  Google Scholar 

  11. Vinicius DS, Thiago AS, Francisco JAL, et al. Solution Blow Spun Nickel Oxide/Carbon Nanocomposite Hollow Fibres as an Effificient Oxygen Evolution Reaction Electrocatalyst[J]. Int. J. Hydrogen. Energy, 2019, 44: 14877–14888

    Article  Google Scholar 

  12. Bell TE, Torrente-Murciano L. H2 Production via Ammonia Decomposition Using Non-noble Metal Catalysts: A Review[J]. Top. Catal., 2016, 59: 1438–1457

    Article  CAS  Google Scholar 

  13. Wang M, Tan X, Motuzas J, et al. Hydrogen Production by Methane Steam Reforming Using Metallic Nickel Hollow Fiber Membranes[J]. J. Memb. Sci., 2021, 620: 118 909(1–9)

    Google Scholar 

  14. Wang M, Zhou Y, Tan X, et al. Nickel Hollow Fiber Membranes for Hydrogen Separation from Reformate Gases and Water Gas Shift Reactions Operated at High Temperatures[J]. J. Memb. Sci., 2019, 575: 89–97

    Article  CAS  Google Scholar 

  15. Jiang F, Fang Y, Xue Q, et al. Graphene-based Carbon Nano-fibers Grown on Thin-sheet Sinter-locked Ni-fiber as Self-Supported Electrodes for Supercapacitors[J]. Mater. Lett., 2010, 64: 199–202

    Article  CAS  Google Scholar 

  16. He B, Ling Y, Xu J, et al. Effect of Nickel Impregnated Hollow Fiber Anode for Micro Tubular Solid Oxide Fuel Cells[J]. J. Power. Sources, 2014, 258: 391–394

    Article  CAS  Google Scholar 

  17. Yao M, Hu Z, Xu Z, et al. Template Synthesis and Characterization of Nanostructured Hierarchical Mesoporous Ribbon-like NiO as High Performance Electrode Material for Supercapacitor[J]. Electrochim. Acta, 2015, 158: 96–104

    Article  CAS  Google Scholar 

  18. Xi C, Zhu G, Liu Y, et al. Belt-Like Nickel Hydroxide Carbonate/Reduced Graphene Oxide Hybrids: Synthesis and Performance as Supercapacitor Electrodes[J]. Colloids Surf. A, 2018, 538: 748–756

    Article  CAS  Google Scholar 

  19. Mrinmoy M, Madhurima D, Sirshendu D. A Novel Ultrafifiltration Grade Nickel Iron Oxide Doped Hollow Fiber Mixed Matrix Membrane: Spinning, Characterization and Application in Heavy Metal Removal [J]. Sep. Purif. Technol., 2017, 188: 155–166

    Article  Google Scholar 

  20. Wang D, Zhou WL, McCaughy BF, et al. Electrodeposition of Metallic Nanowire Thin Films Using Mesoporous Silica Templates[J]. Adv. Mater., 2003, 15: 130–133

    Article  Google Scholar 

  21. Lu X, Zhao C. Electrodeposition of Hierarchically Structured Three-dimensional Nickel-iron Electrodes for Efficient Oxygen Evolution at High Current Densities[J]. Nat. Commun., 2015, 6: 6616(1–7)

    Article  CAS  Google Scholar 

  22. Liu Z, Li S, Yang Y, et al. Complex-surfactant-assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts[J]. Adv. Mater., 2003, 15: 1946–1948

    Article  CAS  Google Scholar 

  23. Srinivas V, Barik SK, Bhaskarjyoti B, et al. Magnetic and Electrical Properties of Oxygen Stabilized Nickel Nanofibers Prepared by the Borohydride Reduction Method[J]. J. Magn. Magn. Mater., 2008, 320: 788–795

    Article  CAS  Google Scholar 

  24. Wu H, Zhang R, Liu X, et al. Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties[J]. Chem. Mater., 2007, 19: 3506–3511

    Article  CAS  Google Scholar 

  25. Li T, Liu Y, Peng T, et al. Controlled Synthesis of Polycrystalline Nickel Oxalate Nanofibers by the Mild Thermal Precipitation and Aging Process[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2011, 26(6): 1041–1043

    Article  CAS  Google Scholar 

  26. Li T, Liu Y, Ma G, et al. Spherical and Radiate Ni Particles Prepared by the Tartrate Precipitation and Thermal Decomposition Method[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2013, 28(5): 857–861

    Article  CAS  Google Scholar 

  27. Dorneanu PP, Airinei A, Homocianu M, et al. Photophysical and Surface Characteristics of Electrospun Polysulfone/Nickel Fibers[J]. Mater. Res. Bull., 2015, 64: 306–311

    Article  CAS  Google Scholar 

  28. Khalili S, Chenari HM, Mottaghian F. Electrospinning Fabrication of Nickel Oxide Fibers: Whole Powder Pattern Modeling (WPPM) Approach, Morphology, Optical and Magnetic Properties[J]. Mater. Res. Bull., 2021, 140: 111 305(1–9)

    Article  Google Scholar 

  29. Li T, Ma G, Chen J, et al. Controlled Synthesis of Core-shell Nickel Microspheres with Solid Core and Porous Shell by Precipitation and Thermal Decomposition Method[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(4): 824–829

    Article  CAS  Google Scholar 

  30. Li T, Liu Y, Ma G. Preparation of Submicro-porous Nickel Wafers by Molding-decomposition-sintering Method Using Nickel Oxalate Nano-rods as Precursors[J]. Rare Metal Mat. Eng., 2016, 45(6): 1396–1400

    Article  CAS  Google Scholar 

  31. Li T, Liu Y, Ma G. Guidance Evolution Mechanism of Nickel Oxalate Microstructure for Formation of Polycrystalline Nickel Nano-fibers[J]. Rare Metal Mat. Eng., 2017, 46(9): 2371–2374

    Article  CAS  Google Scholar 

  32. Kukula P, Cerveny L. Characterization of Chirally Modified Raney Nickel and Compounds of Tartaric Acid and Nickel[J]. Appl. Catal. A, 2002, 223: 43–55

    Article  CAS  Google Scholar 

  33. Li T, Lu Z, Chen W. A Preparation Method of Nickel Tartrate Nanobelts[P]. CN, 201710447437.3

  34. Jones TE, Baddeley CJ. An Investigation of the Adsorption of (R,R)-tartaric Acid on Oxidized Ni{111} Surface[J]. J. Mol. Catal. A Chem., 2004, 216: 223–231

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Doctoral Fund of Chengdu University (2081919131) and the Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province (2021CL27)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li  (李涛).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Chen, J. & Ma, G. Self-assemble Mechanism of Nickel Nanobelts Prepared by Sol-precipitation and Thermal Decomposition Route. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 206–211 (2022). https://doi.org/10.1007/s11595-022-2519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2519-x

Key words

Navigation