Skip to main content

Advertisement

Log in

Preparation of Phlogopite-based Geopolymer and Its Surface Nonpolar Modification

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Phlogopite-based geopolymer was first prepared successfully under the activation of lye by compression molding at 50 MPa for 1 minute. The geopolymer was endowed with nonpolar surface via brushing modified liquid at room temperature. Swill-cooked dirty oil, whose main component was fatty acid, was used as nonpolar modifier. The raw materials and geopolymer samples were characterized by XRD, FT-IR and SEM. The compression strength of 7-day specimen run up to 36.8 MPa and its surface static water contact angle could reach 132°. The solubility of phlogopite powder directly affected the compressive strength of geopolymers and the evaluation index of mechanical strength of geopolymer based on the solubility of phlogopite powder was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidovits J. Synthesis of New High-temperature Geo-polymers for Reinforced Plastics/Composites[C]. Proceedings of PACTEC 79, Society of Plastic Engineers, 1979: 151–174

  2. Kong D L Y, Sanjayan J G, Sagoe-Crentsil K. Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash after Exposure to Elevated Temperatures[J]. Cement & Concrete Research, 2007, 37(12): 1583–1589

    Article  CAS  Google Scholar 

  3. Zhang L, Ahmari S, Zhang J. Synthesis and Characterization of Fly Ash Modified Mine Tailings-based Geopolymers[J]. Construction & Building Materials, 2011, 25(9): 3773–3781

    Article  Google Scholar 

  4. Lin W, Zhou F, Luo W, et al. Recycling the Waste Dolomite Powder with Excellent Consolidation Properties: Sample Synthesis, Mechanical Evaluation, and Consolidation Mechanism Analysis[J]. Construction and Building Materials, 2021, 290: 123198

    Article  CAS  Google Scholar 

  5. Li H, Xu DL. The Future Resources for Eco-building Materials: II. Fly Ash and Coal Waste[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2009(04): 157–160

  6. Jaarsveld J G S V, Deventer J S J V, Lukey G C. The Effect of Composition and Temperature on the Properties of Fly Ash- and Kaolinite-based Geopolymers[J]. Chemical Engineering Journal, 2002, 89(1): 63–73

    Article  Google Scholar 

  7. Bakri A M M A, Kamarudin H, Bnhussain M, et al. Effect of Na2SiO3/NaOH Ratios and NaOH Molarities on Compressive Strength of Fly Ash-based Geopolymer[J]. Aci Materials Journal, 2012, 109(5): 503–508

    Google Scholar 

  8. Gunasekara C, Law D W, Setunge S, et al. Effect of Element Distribution on Strength in Fly Ash Geopolymers[J]. ACI Materials Journal, 2017, 114(5): 795–808

    Google Scholar 

  9. Duxson P, Mallicoat S W, Lukey G C. The Effect of Alkali and Si/Al Ratio on the Development of Mechanical Properties of Metakaolin-based Geopolymers[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 292(1): 8–20

    Article  Google Scholar 

  10. Yao X, Tao Y, Zhang Z. Fly Ash-based Geopolymers: Effect of Slag Addition on Efflorescence[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2016, 31(3): 689–694

    Article  CAS  Google Scholar 

  11. Xiaolu G, Huisheng X, Mingfeng X. Static and Dynamic Leaching Experiments of Heavy Metals from Fly Ash-based Geopolymers[J]. Journal Wuhan University of Technology -Materials Science Edition, 2013, 28(5): 938–943

    Article  Google Scholar 

  12. Lin W, Zhou F, Luo W, et al. Alkali-activated Dolomite and Its Outstanding Mechanical Strength[J]. Materials Letters, 2020, 270: 127682

    Article  CAS  Google Scholar 

  13. Duan P, Yan C, Luo W, et al. A Novel Surface Waterproof Geopolymer Derived from Metakaolin by Hydrophobic Modification[J]. Materials Letters, 2016, 164: 172–175

    Article  CAS  Google Scholar 

  14. Hos J P, Mccormick P G, Byrne L T. Investigation of a Synthetic Aluminosilicate Inorganic Polymer[J]. Journal of Materials Science, 2002, 37(11): 2311–2316

    Article  CAS  Google Scholar 

  15. Mathew G, Joseph B. Flexural Behaviour of Geopolymer Concrete Beams Exposed to Elevated Temperatures[J]. Journal of Building Engineering, 2017, 15: 311–317

    Article  Google Scholar 

  16. Panda B, Paul S C, Hui L J, et al. Additive Manufacturing of Geopolymer for Sustainable Built Environment[J]. Journal of Cleaner Production, 2017, 167: 281–288

    Article  CAS  Google Scholar 

  17. Singhal A, Gangwar B P, Gayathry J M. CTAB Modified Large Surface Area Nanoporous Geopolymer with High Adsorption Capacity for Copper Ion Removal[J]. Applied Clay Science, 2017, 150: 106–114

    Article  CAS  Google Scholar 

  18. Davidovits J. Geopolymers and Geopolymeric Materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429–441

    Article  CAS  Google Scholar 

  19. Davidovits J. Geopolymers: Inorganic Polymeric New Materials[J]. Journal of Thermal Analysis & Calorimetry, 1991, 37(8): 1633–1656

    Article  CAS  Google Scholar 

  20. Haha M B, Saout G L, Winnefeld F, et al. Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-furnace Slags[J]. Cement & Concrete Research, 2011, 41(3): 301–310

    Article  Google Scholar 

  21. Jin F, Gu K, Al-Tabbaa A. Strength and Drying Shrinkage of Reactive MgO Modified Alkali-activated Slag Paste[J]. Construction & Building Materials, 2014, 51(4): 395–404

    Article  Google Scholar 

  22. Sreenivasan H, Kinnunen P, Heikkinen E P, et al. Thermally Treated Phlogopite as Magnesium-rich Precursor for Alkali Activation Purpose[J]. Minerals Engineering, 2017, 113: 47–54

    Article  CAS  Google Scholar 

  23. Wang J W, Li X Z, Fan M, et al. Porous β-sialon Planar Membrane with a Robust Polymer-derived Hydrophobic Ceramic Surface[J]. Journal of Membrane Science, 2017, 535: 63–69

    Article  CAS  Google Scholar 

  24. Gu J, Wang J, Li Y, et al. Engineering Durable Hydrophobic Surfaces on Porous Alumina Ceramics Using In-situ Formed Inorganic-organic Hybrid Nanoparticles[J]. Journal of the European Ceramic Society, 2017, 37(15): 4843–4848

    Article  CAS  Google Scholar 

  25. Cao W, Sun X, Chen F, et al. Prospect on Discerning Technology of Swill-cooked Dirty Oil[J]. China Oils & Fats, 2012, 37(5): 1–5

    Google Scholar 

  26. Zhan H, Xi J, Zhao K, et al. A Spectral-mathematical Strategy for the Identification of Edible and Swill-cooked Dirty Oils Using Terahertz Spectroscopy[J]. Food Control, 2016, 67: 114–118

    Article  CAS  Google Scholar 

  27. Gao S, Luo T, Zhou Q, et al. A Novel and Efficient Method on the Recovery of Nanosized CeO2 in Ce(3+) Wastewater Remediation Using Modified Sawdust as Adsorbent[J]. Journal of Colloid & Interface Science, 2017, 512: 629–637

    Article  Google Scholar 

  28. Zhou Q, Luo T, Yang H, et al. From Fly Ash Waste Slurry to Functional Adsorbent for Valuable Rare Earth Ion Separation: an Ingenious Combination Process Involving Modification, Dewatering and Grafting[J]. Journal of Colloid & Interface Science, 2017, 513(2018): 427–437

    Google Scholar 

  29. Bloss F D, Gibbs G V, Cummings D. Polymorphism and Twinning in Synthetic Fluorophlogopite[J]. Journal of Geology, 1963, 71(5): 537–548

    Article  Google Scholar 

  30. Jacobs H, Metzner U, Kirchgaessner R, et al. Calculated from ICSD using POWD-12[J]. Anorg. Allg. Chem., 1991, 598(1): 175–192

    Article  Google Scholar 

  31. Khan M Z N, Shaikh F U A, Hao Y, et al. Synthesis of High Strength Ambient Cured Geopolymer Composite by Using Low Calcium Fly Ash[J]. Construction & Building Materials, 2016, 125: 809–820

    Article  CAS  Google Scholar 

  32. Sturm P, Gluth G J G, Brouwers H J H, et al. Synthesizing One-part Geopolymers from Rice Husk Ash[J]. Construction & Building Materials, 2016, 124: 961–966

    Article  CAS  Google Scholar 

  33. Andini S, Cioffi R, Colangelo F, et al. Coal Fly Ash as Raw Material for the Manufacture of Geopolymer-based Products[J]. Waste Management, 2008, 28(2): 416–423

    Article  CAS  Google Scholar 

  34. Gao K, Lin K L, Wang D Y, et al. Effects SiO2 /Na2O Molar Ratio on Mechanical Properties and the Microstructure of Nano-SiO2 Metakaolin-based Geopolymers[J]. Construction & Building Materials, 2014, 53(4): 503–510

    Article  Google Scholar 

  35. Karim M R, Zain M F M, Jamil M, et al. Fabrication of a Non-cement Binder Using Slag, Palm Oil Fuel Ash and Rice Husk Ash with Sodium Hydroxide[J]. Construction & Building Materials, 2013, 49(6): 894–902

    Article  Google Scholar 

  36. Zawrah M F, Gado R A, Feltin N, et al. Recycling and Utilization Assessment of Waste Fired Clay Bricks (Grog) with Granulated Blast-furnace Slag for Geopolymer Production[J]. Process Safety & Environmental Protection, 2016, 103: 237–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Luo  (罗文君) or Guanghui Zhang  (张光辉).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 2018033022, 2017036019),the Open Funds of Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences (No.NGM2017KF001), the Fundamental Research Funds for the Central Universities (No.185206011), and the Open Funds of the State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology)(No.G201806)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W., Luo, W., Zhang, G. et al. Preparation of Phlogopite-based Geopolymer and Its Surface Nonpolar Modification. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 433–438 (2021). https://doi.org/10.1007/s11595-021-2427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2427-5

Key words

Navigation