Skip to main content
Log in

Synthesis of Highly Microporous Sulfur-Containing Activated Carbons by a Multistep Modification Process

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The sulfur-containing activated carbons (SACs) were prepared by CO2 activation and sulfur impregnation. The sulfur-containing samples were then oxidized in air. The SACs were characterized by N2 adsorption, elemental analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. The CO2 activation provided precursor carbons with high porosity, which in turn were sulfurized effectively. Oxidation in air at 200 °C enlarged pores and redistributed amorphous sulfur in the hierarchical pores. A typical SAC containing 17.89% sulfur exhibited a surface area of 1 464 m2/g. This work may open up a valid route to prepare highly microporous SACs with high sulfur loading for applications where the presence of sulfur is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seredych M, Bandosz T J. Removal of Dibenzothiophenes from Model Diesel Fuel on Sulfur Rich Activated Carbons[J]. Appl. Catal. B-Environ., 2011, 106(1–2): 133–141

    CAS  Google Scholar 

  2. Seredych M, Bandosz T J. Investigation of the Enhancing Effects of Sulfur and/or Oxygen Functional Groups of Nanoporous Carbons on Adsorption of Dibenzothiophenes[J]. Carbon, 2011, 49(4): 1216–1224

    Article  CAS  Google Scholar 

  3. Li N, Wei H, Duan Y, et al. Experimental Study on Mercury Adsorption and Adsorbent Regeneration of Sulfur-Loaded Activated Carbon[J]. Energy & Fuels, 2018, 32(10): 11023–11029

    Article  CAS  Google Scholar 

  4. Hsi H C, Tsai C Y, Lin K J. Impact of Surface Functional Groups, Water Vapor, and Flue Gas Components on Mercury Adsorption and Oxidation by Sulfur-Impregnated Activated Carbons[J]. Energy & Fuels, 2014, 28(5): 3300–3309

    Article  CAS  Google Scholar 

  5. Nemoto Y, Iitsuka Y, Watanabe K, et al. Adsorptive Removal of Ni (II) from Water Using Oxidized Activated Carbon Derived from Sulfur Containing Petroleum Coke[J]. Kagaku Kogaku Ronbun., 2016, 42(4): 142–147

    Article  CAS  Google Scholar 

  6. Dong C, Zhang H, Pang Z, et al. Sulfonated Modification of Cotton Linter and Its Application as Adsorbent for High-Efficiency Removal of Lead(II) in Effluent[J]. Bioresour. Technol., 2013, 146: 512–518

    Article  CAS  Google Scholar 

  7. Gomis-Berenguer A, Seredych M, Iniesta J, et al. Sulfur-Mediated Photochemical Energy Harvesting in Nanoporous Carbons[J]. Carbon, 2016, 104: 253–259

    Article  CAS  Google Scholar 

  8. Guo Y, Zeng Z, Li Y, et al. In-Situ Sulfur-Doped Carbon as a Metal-Free Catalyst for Persulfate Activated Oxidation of Aqueous Organics[J]. Catal. Today, 2018, 307: 12–19

    Article  CAS  Google Scholar 

  9. Warneke S, Eusterholz M, Zenn R K, et al. Differences in Electrochemistry Between Fibrous SPAN and Fibrous S/C Cathodes Relevant to Cycle Stability and Capacity[J]. J. Electrochem. Soc., 2018, 165(1): A6 017–A6 020

    Article  CAS  Google Scholar 

  10. Gong Z, Wu Q, Wang F, et al. A Hierarchical Micro/Mesoporous Carbon Fiber/Sulfur Composite for High-Performance Lithium-Sulfur Batteries[J]. RSC Adv., 2016, 6(44): 37443–37451

    Article  CAS  Google Scholar 

  11. Yu X, Kang Y, Park H S. Sulfur and Phosphorus Co-Doping of Hierarchically Porous Graphene Aerogels for Enhancing Supercapacitor Performance[J]. Carbon, 2016, 101: 49–56

    Article  CAS  Google Scholar 

  12. Liu W, Tang Y, Sun Z, et al. A Simple Approach of Constructing Sulfur-Containing Porous Carbon Nanotubes for High-Performance Supercapacitors[J]. Carbon, 2017, 115: 754–762

    Article  CAS  Google Scholar 

  13. Seredych M, Jagiello J, Bandosz T J. Complexity of CO2 Adsorption on Nanoporous Sulfur-Doped Carbons — Is Surface Chemistry an Important Factor[J]. Carbon, 2014, 74: 207–217

    Article  CAS  Google Scholar 

  14. Shi J, Yan N, Cui H, et al. Sulfur Doped Microporous Carbons for CO2 Adsorption[J]. J. Environ. Chem. Eng., 2017, 5(5): 4605–4611

    Article  CAS  Google Scholar 

  15. Zhang D, Jing X, Sholl D S, et al. Molecular Simulation of Capture of Sulfur-Containing Gases by Porous Aromatic Frameworks[J]. J. Phys. Chem. C, 2018, 122(32): 18456–18467

    Article  CAS  Google Scholar 

  16. Yan Y, Wei Y, Li Q, et al. Activated Porous Carbon Materials with Ultrahigh Specific Surface Area Derived from Banana Peels for High-Performance Lithium-Sulfur Batteries[J]. J. Mater. Sci.-Mater. Electron., 2018, 29(13): 11325–11335

    Article  CAS  Google Scholar 

  17. Zheng M, Zhang S, Chen S, et al. Activated Graphene with Tailored Pore Structure Parameters for Long Cycle-Life Lithium-Sulfur Batteries[J]. Nano Res., 2017, 10(12): 4305–4317

    Article  CAS  Google Scholar 

  18. Kiciński W, Dziura A. Heteroatom-Doped Carbon Gels from Phenols and Heterocyclic Aldehydes: Sulfur-Doped Carbon Xerogels[J]. Carbon, 2014, 75: 56–67

    Article  CAS  Google Scholar 

  19. Yin F, Yu J, Dou J, et al. Sulfidation of Iron-Based Sorbents Supported on Activated Chars During the Desulfurization of Coke Oven Gases: Effects of Mo and Ce Addition[J]. Energy & Fuels, 2014, 28(4): 2481–2489

    Article  CAS  Google Scholar 

  20. Wu G, Xu M, Liu Q, et al. Micromechanism of Sulfurizing Activated Carbon and Its Ability to Adsorb Mercury[J]. Appl. Phys. A-Mater. Sci. Process., 2013, 113(2): 389–395

    Article  CAS  Google Scholar 

  21. Feng W, Borguet E, Vidic R D. Sulfurization of Carbon Surface for Vapor Phase Mercury Removal — I: Effect of Temperature and Sulfurization Protocol[J]. Carbon, 2006, 44(14): 2990–2997

    Article  CAS  Google Scholar 

  22. Perazzolo V, Gradzka E, Durante C, et al. Chemical and Electrochemical Stability of Nitrogen and Sulphur Doped Mesoporous Carbons[J]. Electrochim. Acta, 2016, 197: 251–262

    Article  CAS  Google Scholar 

  23. Roberts A D, Li X, Zhang H. Hierarchically Porous Sulfur-Containing Activated Carbon Monoliths via Ice-Templating and One-Step Pyrolysis[J]. Carbon, 2015, 95: 268–278

    Article  CAS  Google Scholar 

  24. Wang D, Fu A, Li H, et al. Mesoporous Carbon Spheres with Controlled Porosity for High-Performance Lithium-Sulfur Batteries[J]. J. Power Sources, 2015, 285: 469–477

    Article  CAS  Google Scholar 

  25. Yao Y, Velpari V, Economy J. Design of Sulfur Treated Activated Carbon Fibers for Gas Phase Elemental Mercury Removal[J]. Fuel, 2014, 116: 560–565

    Article  CAS  Google Scholar 

  26. Sohn H, Gordin M L, Regula M, et al. Porous Spherical Polyacrylonitrile-Carbon Nanocomposite with High Loading of Sulfur for Lithiumesulfur Batteries[J]. J. Power Sources, 2016, 302: 70–78

    Article  CAS  Google Scholar 

  27. Park J H, Wang J J, Zhou B, et al. Removing Mercury from Aqueous Solution Using Sulfurized Biochar and associated Mechanisms[J]. Environ. Pollut., 2019, 244: 627–635

    Article  CAS  Google Scholar 

  28. Wang S, Zhao Z, Xu H, et al. Sulfur Impregnated in Tunable Porous N-Doped Carbon as Sulfur Cathode: Effect of Pore Size Distribution[J]. Electrochim. Acta, 2015, 173: 282–289

    Article  CAS  Google Scholar 

  29. Yang S, Wang D, Liu H, et al. Highly Stable Activated Carbon Composite Material to Selectively Capture Gas-Phase Elemental Mercury from Smelting Flue Gas: Copper Polysulfide Modification[J]. Chem. Eng. J., 2019, 358: 1235–1242

    Article  CAS  Google Scholar 

  30. Sánchez-Sánchez A, Suárez-García F, Martínez-Alonso A, et al. Surface Modification of Nanocast Ordered Mesoporous Carbons Through a Wet Oxidation Method[J]. Carbon, 2013, 62: 193–203

    Article  CAS  Google Scholar 

  31. Prauchner M J, Rodríguez-Reinoso F. Chemical Versus Physical Activation of Coconut Shell: a Comparative Study[J]. Microporous Mesoporous Mat., 2012, 152: 163–171

    Article  CAS  Google Scholar 

  32. Yu Q, Li M, Ning P, et al. Characterization of Metal Oxide-Modified Walnut-Shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2019, 34(2): 487–495

    Article  CAS  Google Scholar 

  33. Sajjadi B, Chen W Y, Egiebor N O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications[J]. Rev. Chem. Eng., 2019, 35(6): 735–776

    Article  CAS  Google Scholar 

  34. Sevilla M, Fuertes A B. Highly Porous S-Doped Carbons[J]. Microporous Mesoporous Mater., 2012(158): 318–323

  35. Zhang J, Xiang J, Dong Z, et al. Biomass Derived Activated Carbon with 3D Connected Architecture for Rechargeable Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2014(116): 146–151

  36. Hsi H-c, Rood M J, Rostam-abadi M, et al. Effects of Sulfur Impregnation Temperature on the Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (Acfs)[J]. Environ. Sci. Technol., 2001, 35(13): 2785–2791

    Article  CAS  Google Scholar 

  37. Raiß C, Peppler K, Janek J, et al. Pitfalls in the Characterization of Sulfur/Carbon Nanocomposite Materials for Lithium-Sulfur Batteries[J]. Carbon, 2014, 79: 245–255

    Article  CAS  Google Scholar 

  38. Reddy K S K, Al Shoaibi A, Srinivasakannan C. Mercury Removal Using Metal Sulfide Porous Carbon Complex[J]. Process Saf. Environ. Protect., 2018, 114: 153–158

    Article  CAS  Google Scholar 

  39. Elazari R, Salitra G, Garsuch A, et al. Sulfur-Impregnated Activated Carbon Fiber Cloth as A Binder-Free Cathode for Rechargeable Li-S Batteries[J]. Adv. Mater., 2011, 23(47): 5641–5644

    Article  CAS  Google Scholar 

  40. Liang C, Dudney N J, Howe J Y. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery[J]. Chem. Mat., 2009, 21(19): 4724–4730

    Article  CAS  Google Scholar 

  41. Balakumar K, Sathish R, Kalaiselvi N. Exploration of Microporous Bio-Carbon Scaffold for Efficient Utilization of Sulfur in Lithium-Sulfur System[J]. Electrochim. Acta, 2016, 209: 171–182

    Article  CAS  Google Scholar 

  42. Vivo-Vilches J F, Bailón-García E, Pérez-Cadenas A F, et al. Tailoring the Surface Chemistry and Porosity of Activated Carbons: Evidence of Reorganization and Mobility of Oxygenated Surface Groups[J]. Carbon, 2014, 68: 520–530

    Article  CAS  Google Scholar 

  43. Zhou H Y, Sui Z Y, Liu S, et al. Nanostructured Porous Carbons Derived from Nitrogen-Doped Graphene Nanoribbon Aerogels for Lithium-Sulfur Batteries[J]. J. Colloid Interface Sci., 2019, 541: 204–212

    Article  CAS  Google Scholar 

  44. Sohn H, Gordin M L, Regula M, et al. Porous Spherical Polyacrylonitrile-Carbon Nanocomposite with High Loading of Sulfur for Lithium-Sulfur Batteries[J]. J. Power Sources, 2016, 302: 70–78

    Article  CAS  Google Scholar 

  45. Lu Y, Li S. Preparation of Hierarchically Interconnected Porous Banana Peel Activated Carbon for Methylene Blue Adsorption[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2019, 34(2): 472–480

    Article  CAS  Google Scholar 

  46. Al-Kahtani A A, Alshehri S M, Naushad M, et al. Fabrication of Highly Porous N/S Doped Carbon Embedded with ZnS as Highly Efficient Photocatalyst for Degradation of Bisphenol[J]. Int. J. Biol. Macromol., 2019, 121: 415–423

    Article  CAS  Google Scholar 

  47. Manoukian M, Tavakol H, Fashandi H. Synthesis of Highly Uniform Sulfur-Doped Carbon Sphere Using CVD Method and Its Application for Cationic Dye Removal in Comparison with Undoped Product[J]. J. Environ. Chem. Eng., 2018, 6(6): 6904–6915

    Article  CAS  Google Scholar 

  48. Qin L, Hou Z, Lu S, et al. Porous Carbon Derived from Pine Nut Shell Prepared by Steam Activation for Supercapacitor Electrode Material[J]. Int. J. Electrochem. Sci., 2019, 14: 8907–8918

    Article  CAS  Google Scholar 

  49. Wang D, Wang K, Wu H, et al. CO2 Oxidation of Carbon Nanotubes for Lithium-Sulfur Batteries with Improved Electrochemical Performance[J]. Carbon, 2018, 132: 370–379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rendang Yang  (杨仁党).

Additional information

Funded by the National Key Technology R&D Program, China (No.2017YFB0307900)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, K., Sheng, J. & Yang, R. Synthesis of Highly Microporous Sulfur-Containing Activated Carbons by a Multistep Modification Process. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 856–862 (2020). https://doi.org/10.1007/s11595-020-2330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2330-5

Key words

Navigation